

Adaptive Reuse: WeStreet Ice Center

Tulsa, Oklahoma

Hunter Senior, PE - Martin/Martin Architectural Eng. B.S. in 2017 Civil Eng. M.S. in 2019

CANADA *

Licensed to work in Alberta, British Columbia, and Manitoba

LOCATIONS

- Headquarters
- **Branch Office**
- O Remote Employee

Tulsa Oilers

- At time of project start, 90% of leases were vacant or permanently closed
- Mall shutdown indefinitely in 2023

MARTIN/MARTIN CONSULTING ENGINEERS

Macy's Anchor Store

Typical Building Cross Section

Truss Deflection

- Changing from 2 span joist girder to single span truss
- Maintain roof slopes
- Understanding *actual* dead load
- Connection weights

Demolition / Column Removal

• Bottom chord rod connections could be tightened if truss sagged

COLUMN JACK LOAD AND DISPLACEMENT TABLE							
MARK	JACK EXPECTED LOAD (KIP) ASD	JACK DESIGN LOAD (KIP) ASD	TARGET JACK HEIGHT FOR TRUSS ERECTION				
1	53	70	N/A				
2	77	100	N/A				
3	60	75	2 3/4"				
4	115	145	N/A				
5	65	85	3"				
6	58	75	N/A				
7	150	185	N/A				
8	41	55	3 1/2"				
9	65	85	2"				
(10)	236	295	N/A				
(11)	99	125	2 1/2"				
(12)	51	65	N/A				

Construction Sequencing

Truss Design

Truss Design - Connections

Truss Design

MARTIN/MARTIN

- Bridging designed for stability, strength and stiffness requirements per AISC 360 – Appendix A
- 3-Bays of X-bracing/bridging
- A load-path from the bridging elements to the roof deck diaphragm and lateral system was detailed

CONN TO (E) JOISTS

Foundation Reinforcing

CANTIN/MARTIN CONSULTING ENGINEERS

- Removing and replacing was done via jacking
- Carry frame spanned across footing to dunnages bearing on SOG

CONSULTING ENGINEERS

Demolition / Column Removal

- Fully removed 36 WF columns
- Removed / modified 41% of all existing columns
- (E) framing remained for column bracing until truss install

Lateral Retrofitting

• Increased Risk Category

MARTIN/MARTIN

- Removed several bays of braced frames / could not easily access existing frames
- Some (E) braces were not installed correctly
- Retrofitted from 2" pipes to HSS6x6x3/8 braces

Lateral Retrofitting - Diaphragm

- Cut two massive holes in Level 2
- Split into 6-sub diaphragms

MARTIN/MARTIN

- Transformed into semi-rigid diaphragms due to aspect-ratio
- Add drag connections and turn regular members into chord members

Stadia

- Slab-on-metal-deck stadia with WF Rakers
- Could not do traditional precast due to accessibility

Unique Considerations

- Zamboni pit and trench drains
- Skate friendly finishes
- Massive buried pipes for refrigerant

Adaptive Reuse Advantages

- Saved on schedule
- Greatly reduced material cost
- 76% reduction of embodied carbon

Embodied Carbon Intensity kgCO2e/Sq. Ft.

New Ground-Up	Actual Construction		
29.02	6.86		

Category	Concrete	Steel	Architectural	Total (kgCO2e)	GWP Reduction %
New Ground-Up	604,600	1,456,700	695,300	2,756,600	-
Actual Construction	105,000	546,400	-	651,400	76.37

Total Area = $95,000 \text{ ft}^2$

Thank You

CONTACT

martinmartin.com

Hunter Senior, PE (CO) hsenior@martinmartin.com

SERVICES

- Structural Engineering
- Civil Engineering
- Investigative Engineering
- Construction Engineering
- Survey

9

Offices nationwide **9,600+** Projects in

the last

5 years

80+

Years of engineering excellence

m