Soil Models for Geotechnical Design, Prediction and Problem Solving

Andrew J. Whittle Massachusetts Institute of Technology

60th Karl Terzaghi Lecture presented at 56th Annual Geotechnical Conference, University of Kansas November 2024

Introduction

Observations

- Soil models are ubiquitous in geotechnical analyses
- They are essential components in numerical, FE(FD) analyses

My Goal

- Share my experience in the development & application of soil models
 Effective stress-strain-strength properties
- Predictions of performance
- Insights for geotechnical problem solving
- Roles in design

• The lecture will NOT

- Use equations
- Review the huge literature on this topic

Outline

Soil Behavior & Generalized Soil Models

- Models of 1-D consolidation
- Shearing: yield, non-linear stiffness, anisotropy
- Modeling rate effects
 - → Unify/accommodate 'Hypothesis A vs B' (Taylor, 1942; Ladd et al. 1977)

Applications for Clays

- Deep excavations
- Staged construction & foundations

Sands

- Effects of confining pressure and density on bearing behavior
- Latent instability & triggering of static liquefaction

Complex Soils & Multiscale Models

• 'Destructuring' - effects of changing microstructure on macroscopic behavior

Soil Behavior & Generalized Soil Models

One-Dimensional Consolidation & Three Soil Models

Measured data described by elasto-plastic model with single yield function Inherent anisotropy linked to prior consolidation history Rotation of yield surface linked to particle fabric

Model Validation: Undrained Plane Strain Shear Tests [Resedimented BBC, OCR = 1] Shear Stress, τ/σ'_{vc} 0.3 0.3 Shear Stress, $(\sigma_v^{}-\sigma_h^{})/2\sigma_{vc}^{'}$ 0.2 Predictions: Model Line 0.1 MCC ----MIT-E3 2 Shear Strain, $\gamma = (\epsilon_1 - \epsilon_3)$ (%) -0.1 Measured Data: Symbol $\delta_{inc}^{(0)}$ -0.2 Device Source 0 (A) PS Ladd et al. (1971) . -0.3 0 (A) DSC Seah (1990)

MCC: limitation of isotropic model with unique s_u at critical state MIT-E3: capability to predict anisotropic stress-strain-strength properties of NC clay

.

.

=

-0.4

2

4

Shear Strain, $|\varepsilon_{ij} - \varepsilon_{jk}|$ (%)

6

45

90 (P)

90 (P)

DSC

PS

DSC Seah (1990)

Varies DSS Ladd & Edgers (1972)

Seah (1990)

Ladd et al. (1971)

Evaluation of Undrained Strength Anisotropy for BBC

Accept limitations: No edits to model formulation; No adjustments to input parameters

4

۲

v

1

.

10

Behavior reflects complex Holocene geology of Boston area Little physical evidence to explain differences in sub-layer properties Sub-layers: Selection of compression index (C_c) will reflect stress range of interest

Scale Effects: Primary & Secondary Compression

Can simulate both Hypothesis A & B

Two calibrations: MIT-SR bounds the data

Validation Using Available Monitoring Data

Applications for Clays

Deep Excavations in Boston

Courthouse Station Project

Class A predictions: Included in construction bid package Class C predictions: Updated excavation timeline, strut preloads

[Whittle et al., 2015]

In Situ Properties: South Boston

Data from nearby Special Test Site – Ladd et al. (1999) Extensive test program: In situ tests & laboratory tests Very low margin of safety against basal instability; FS = 1.18 – 1.23 (original design)

[Whittle et al., 2015]

Performance of Excavation Support Systems Class A vs Class C Predictions: Courthouse Station

Stability Using Numerical Limit Analyses (NLA)

Upper & Lower Bounds solved using FE spatial discretization (after Sloan, 2013)

Undrained Stability of Courthouse Excavation, South Boston

[John, pers. comm., 2024]

Wall Deflection and Control of Construction

Empirical data exhibit large scatter LEM – not accurate for FS

Estimates average soil shear strain from assumed plastic flow mechanism

Shear stress from DSS mode Mobilization factor, M ~ FS (shear strength reduction)

Evaluation of MSD Using FE Numerical Simulations

MSD: Computed incrementally using M from MIT-E3 (DSS shear mode)

- MSD Underestimates δ_w : Passive shear mode controls below excavated grade
- MSD Overestimates δ_v : Flow mechanism too simplified

MIT-E3/FE simulations – rich data source for training machine learning algorithms

Failure of Offshore Rockfill Breakwater, Sergipe

Undrained Stability Analyses

Deformation Analyses of Stage 2 Rockfill

Millennium Tower, 301 Mission St., San Francisco

Site plan: MT & MP: completed

2009

Adjacent Projects

Transbay Transit Center:	2011-2018
350 Mission:	2012-2015
Sales Force Tower & P:	2014-2018

Why is MIT-SR Model Useful for Analysis of Millennium Tower?

Extensive SI & laboratory data available (Arup, 2010) [post MT-construction] MIT-SR simulates OC-NC transition with primary consolidation & creep

Foundation Settlements

Drawdown adds ~4cm to settlements Drawdown does not affect tilt direction Small effect on magnitude of settlement Large effect of podium on mat tilt direction

Evaluation of Tower Tilt: Roof Level Deflections

[Assuming Planar Deformation of Foundation Mat]

Towards North:

- Significant tilt measured at EOC (35 40 cm)
- Model predictions in reasonable agreement with measured response
- Drawdown & podium have little effect
- Reversal in 2012: ground loss of TTC buttress

Towards West:

- Measured tilt
 - At EOC (15 cm to East)
 - Subsequent tilt (35 cm to West)
- Podium construction has major impact on EOC predictions (unrealistic)
- Similar results reported Stewart et al. (2023)
- Subsequent E-W tilt NOT predicted by these foundation models
- Cause?

Sands

Prediction of Sand Behavior: MIT-S1 Model

Effects of Sand Density on Bearing Behavior of Surface Foundation

Effect of Foundation Size on Bearing Capacity

Results provide basis for study of effects of spatial variability in sands

Chen et al. (2020)

Spontaneous/Static Liquefaction of Upstream Tailings Dam

Brumadinho, MG, Brazil January 2019

Córrego do Feijão Dam 1:

12M m³ iron ore tailings released; 260 lives lost; \$7B compensation settlement (2021)

Failure occurred 3 years after end of operations

Prohibition on upstream construction for tailings (Brazil, 2020)

Current methods require estimates of ψ from piezocone penetration

Model Prediction of Latent Instability Caused by Undrained Shear Perturbation

- Highlights limitations of existing methods for interpreting instability
- Quantitative predictions strongly dependent on constitutive model

Challenge in Evaluating Liquefaction Stability of Tailings

Hydraulic fill: particle segregation Fine vs coarse - affect engineering properties

Application of advanced soil model requires:

Site stratigraphy (hydraulic fill) & in situ state (void ratio, fabric) Limited data available for Brumadinho failure:

Application of advanced soil model involves large uncertainties: Better to use simpler approach

Large difference in estimated CSLs Note: similarity to Jamuna silt Separate model calibration MIT-S1 [CSL, LCC]

Stability Analyses using Numerical Limit Analyses

Mechanism consistent with observed failure

Conventional stability analyses reveal risks associated with latent instability:

i.e., $FS < FS_X$ [where $\Lambda_{LIQ} = 0$] Whittle et al. (2021)

Complex Soils – Multiscale Modeling

Old Alluvium: Transported Residual Soil

Understanding the Microstructure of Old Alluvium

ESEM Imaging

(%wt)	Upper Clay (UC)		Middle Zone (MZ)	
Mineral	Air	Oven-	Air	Oven
	Dried	Dried	Dried	Dried
Adsorbed	12.43	0.00	8.39	0.00
water				
Quartz	19.42	22.18	29.00	31.66
Orthoclase	8.19	9.35	15.44	16.86
Muscovite	trace	trace	trace	trace
Kaolinite	29.46	33.64	21.01	22.93
Nontronite	17.65	20.16	11.98	13.08
Montmorillonite	0.00	0.00	2.05	2.24
Illite	0.00	0.00	2.75	3.00
Pyrophyllite	0.00	0.00	2.75	3.00
Goethite	5.11	5.83	2.39	2.61
Hematite	2.76	3.15	0.00	0.00
Total	95.02	94 31	95 76	95 38

Quantitative Mineralogy QXRD, TGA, CEC Selective chem. dissolution

Clay platelets are coated and connected by Fe-oxides Aggregates are connected by Fe-oxide cementation Intact soil: double porosity (intra- and inter- aggregate voids)

(Zhang et al., 2004)

Effect of Degradation of Microstructure on Engineering Properties of Old Alluvium

Large swelling potential released by compression above yield stress (σ'_y) Swelling strains are initially constrained by cementation of clay aggregates Very large reduction in c_v

Hydraulic conductivity remains much higher than typical clays

Model of Disaggregation and Swelling of Old Alluvium

Assumptions:

Microscale swelling:

electrostatic repulsion $\pi_D[C_e]$ Macroscale: swelling pressure, p_{sw}

Micro-macro relation depends on surface area of swelling minerals exposed to pore fluid [After Alonso, 1998]

Model of 1-D Compression for Old Alluvium

First attempt to simulate mechanical behavior of residual soil profile We have not quantified predicted effects of destructuration on shear yet

Summary

Soil Models

- Reflect understanding of soil behavior
- Benefit from advances in lab testing capabilities

Accurate predictions are achievable

- Deformations & stability
- Require good site investigation & model calibration
- Careful validation shows credible scaling from lab to field

Constitutive models offer insights

- Solution of complex problems
- Latent instability in hydraulic fills
- Set-up behavior of driven piles

Insights into effective use of simplified methods

- Numerical Limit Analyses (NLA) for stability
- Potential design (e.g. MSD; SSPM)
- Future
 - Multi-scale models of materials (micro-macro behavior)
 - Upscaling methods (macro-elements for seismic SSI)
 - Meshless methods (large deformation problems)
- Note: I plan to submit a journal paper based on this lecture (2024)