Insights on Seismic Soil-Structure Interaction for Bridges from Large-Scale Field Tests

Kyle Rollins Civil & Construction Engineering Brigham Young University

KU Geotechnical Conference Nov. 7, 2024

Ralph Rollins, performed geotechnical investigations for over 5000 structures

Rachel Rollins was a Civil Engineering student

Granddaughter, Ella, shows early interest in soil behavior...

Insights on Seismic Soil-Structure Interaction for Bridges from Large-Scale Field Tests

Kyle Rollins Civil & Construction Engineering Brigham Young University

KU Geotechnical Conference Nov. 7, 2024

H. Bolton Seed

First, get the facts, to understand the basic mechanisms involved

Second, perform a series of tests or analyses to flesh out the details involved and how the parameters are related.

Third, package the results so that they can be easily understood and used by engineers

Lateral Resistance of Bridge Abutments and Piles

Passive Force-Deflection Curves for the Abutment

Force-Deflection Curves for Piles near MSE Walls

Passive Force on Bridge Abutments

- Passive force contributes to resistance
- Using smaller passive force (lower K_p) may be conservative

Passive Force During Lateral Spreading

- Lateral Spread Displacement often Driven by Passive Force
- Lower K_P is not conservative; need realistic forces

Buckled Railroad Bridge Caused by Lateral Spread During the 1964 Alaska Earthquake

Skewed bridge pushed off of supports due to lateral spread displacements in 1991 Costa Rica Earthquake

 $D_{\rm H}$ from Youd et al (2002)

"One good test is worth a thousand expert opinions."

Werner Von Braun

Designer of Saturn V Moon Rocket

Space Shuttle Columbia Disaster

Numerical analyses based on impact of small ice particles imply styrofoam impact would not be a problem.

Full-scale test shows a problem

Healthy Skepticism for Tests

- A theory is something nobody believes, except the person who proposed it
- An experiment (test) is something everybody believes, except the person who performed it

--Albert Einstein

"The trouble with quotes on the internet is that it's difficult to discern whether or not they are genuine."

– Abraham Lincoln

Passive Force-Deflection from Large-ScaleTesting

Background

Passive Pressure for non-skewed abutments (Maroney (1995), Duncan and Mokwa (2001), Rollins and Sparks (2002), Rollins and Cole (2006), Lemnitzer et al (2009)

Passive force best estimated using log-spiral method
Peak passive force mobilized at displacement of 0.03H to 0.05H
Hyperbolic curve best represents passive force-displacement curve

Comparison of Failure Geometries

Testing Program

Variations in Wingwall Geometry

Transverse Wingwalls

Parallel Wingwalls

MSE Wingwalls

- Variations in Backfill Materials
 - Sand
 - Gravel
 - Geosynthetically Reinforced Soil (GRS)
 - Lightweight Cellular Concrete (LCC)

Backfill Heave and Failure Surfaces

\mathbf{V}	/ariation in ϕ	and K _p for Differer	nt Walls
Transve	rse Wingwalls	MSE Wingwalls	Parallel Wingwalls
riction ngle, φ	40°	45°	40°
Plane Stra	in Friction Angl	e, ϕ_{PS} = 1.12 $\phi_{TRIAXIAL}$	= 1.12 (40°) = 44.8°
K _p	12.9	21.8 (65%)	12.9

F

A

Influence of Relative Compaction

Failure Planes & Heave Profiles

- Densely compacted backfill has log-spiral failure surface with heaving in the shear zone
- Loosely compacted backfill has planar (i.e., Rankine) failure surface with settlement in the shear zone

Damage to Bridges with Skewed Abutments-Chile

Santiago O

San Fernando 90

Curico

Rancagua

George Mylonakis

Domniki Asimaki

Kyle Rollinopoulos

1001000	Not felt	Weak	Uge	[Moderate]	Strong	Very strong	Severe	Violent	Extreme
POTIATIAL DAMAGE	nome	0008	00/10	Very tight	Ught	Moderate	Mod. Heiny	Pleasy	Very Pleas
PEAK ACC.[16]	40.7	0.5	2.4	6.7	10	24	44	63	>156
PEAK YEL(own)	+0.07	0.4	1.9	5.8	11	22		83	>160
INSTRUMENTAL INSTRUMENTAL	1	10-01	IV	v	- VI	VI	WIII .	10	84

Permanent Abutment Offset at Skewed Bridge

Settlement and Sliding of Approach Fills

Damage rate for skewed bridges was twice that of non-skewed bridges (Toro et al 2013)

Numerical Analysis of Skewed Abutments

23 m (75 ft) wide abutment with 2.4 m (8 ft) high backwall (5th NSC, Shamsabadi et al., 2006)

Skewed Bridge Abutment Overview

- ♦ ≈ 40% of 600,000 bridges in US are skewed
- Current AASHTO design code does not consider any effect of skew on passive force
- Observations of poor performance of skewed bridges

Interaction of Forces on Bridge Abutment

Initial Laboratory Testing

Test Layout

Test Procedure

Test Procedure

Test "Abutment"

Test "Abutment"

Test "Abutment"

Displacement: 60 mm 2.5" (0.10H)

Load measurements:

- Longitudinal
- Vertical
- Transverse

Surface Failure Rupture - 30° Skew

Backfill Soil Properties

Passive Force-Displacement Curves

Backwall Displacement Δ (in.)

Shon Jessee

Passive & Shear Stress vs. Skew

Recommended Design Procedure for Skew Effects

$$P_{P(skew)} = R_{skew} P_{p(No-skew)}$$

where R_{skew} is a given by the equation

$$R_{skew} = 8x10^{-5}\theta^2 - 0.018 \theta + 1.0$$

and wall width is equal to non-skewed (projected) width.

(ASCE, J. of Bridge Engrg., Rollins and Jessee 2013)

Passive Force Reduction Factor vs. Skew

Large-Scale Field Testing

TPF-5(264) Passive Force-Deflection Behavior for Skewed Abutments

Sponsors

- Utah DOT Lead Agency
- Oregon DOT
- Montana DOT
- California DOT
- New York DOT
- Minnesota DOT
- Wisconsin DOT
- FHWA

Field Test Setup - Plan View

1 0 16 C

Students on Skewed Abutment Study

Shon Jessee

Aaro

Aaron Marsh

Bryan Franke

Katie Palmer

Jaycee Smith

Kyle Smith

Amy Fredrickson

Daniel Schwicht

Josh Curtis

Tyler Remund

Rebecca Black

Scott Snow

Sand backfill properties

- Poorly graded sand (SP/A-1-b)
 96% relative compaction
- **φ** = 41°
- □ c = 100 lbs/ft²
- $\Box \gamma_{max} = 111.5 \text{ lbs/ft}^3$

No Skew - 0° Test Setup

Concrete Wingwall

Sand

Backfill

APPLIT P

WHIT W

Hydraulic Actuators

Power Gener

15° Skew Test Setup

30° Skew Test Setup

45° Skew Test Setup

Surface Failure Geometry (30° Skew)

Field Test Methodology

Passive Force vs. Displacement

Passive Force Reduction Factor vs. Skew

Test Setup for MSE Wingwall Tests

Welded Wire Grid Reinforcement (SSL)

Field Test with 0° Skew and MSE Wingwalls

Field Test with 30° Skew & MSE Walls

0° Skew

45° Skew

Passive Force-Displacement curves – MSE Wingwalls

Passive Force Reduction Factor vs. Skew

Field and Lab tests involved W/H ratios of 2.0

Does this ratio impact the results?

Field Test with 3 ft Backfill - W/H=3.7

SECTION A-A

Passive Force-Displacement Curves – L/H = 3.7

Passive Force Reduction Factor vs. Skew

45° Skew with RC Wingwalls
GRS Test Setup - 0° and 30° Tests

Passive Force Tests with GRS Backfill

Skew Reduction Factor vs. Skew Angle – All Tests

Results incorporated in Caltrans SDC, Utah, & Oregon Geotech guidelines

Normalized Passive Force vs. Normalized Displacement

Summary of Results for Skewed Abutments

- Significant decrease in passive force with increase in skew angle.
 - Numerical Analysis
 - 8 Small Scale Lab Tests
 - 16 Large Scale Field tests
- Reduction factor proposed by Rollins and Jessee (2013) is applicable for various soil types and wingwall geometries
- Reduction factor not much affected by wall L/H ratio
- Normalized passive force-deflection curve provided by a hyperbola

Problem: All Field Tests have Involved Longitudinal Loading Real Situation Involves Loading at an Angle due to Rotation

T

Abutment Piles near MSE Walls

Abutment Piles Near MSE Walls

MSE Wall Geometry

Elevation View

Plan View

- Wall decreases lateral pile resistance
- Pile load increases force on reinforcement

Approaches to the Problem

Ignore Soil Resistance

Increased Cost from Larger Pile Diameter or More Piles

Approaches to the Problem

Increase Spacing to Eliminate Interaction

Increased Cost from Larger Bridge Span

Approaches to the Problem

Estimate a Reduction Factor

What should the reduction be?

Initial Field Testing at Bridges Under Construction

U.S. Hwy 89 Lateral Load vs. Deflection

Large-Scale Field Testing

Mechanically Stabilized Earth Abutment Wall

MSE Test Wall (20 ft high & 100 ft long)

FHWA Pooled Fund Sponsors

- Utah DOT Lead Agency
- Florida DOT
- Iowa DOT
- Kansas DOT
- MassDOT
- Minnesota DOT
- Montana DOT
- New York DOT
- Oregon DOT
- Texas DOT
- Wisconsin DOT

Students on Piles behind MSE Walls

Jake Price

Kent Nelson

Andrew Luna

Ryan Budd

Cody Hatch

Jason Besendorfer

Jarell Han

Addison Wilson

Pedro Garcia

Zachary Farnsworth

Guillermo Bustamante

Profile View of Test Layout

Ultimate Design

Layout During Tests

Cross-Section Through MSE Wall

Pile Testing Sequence

29 ft Wallta Loffe fests

Installation of Reinforcements

Typical Load Test Set-up

Reaction Pile

Measured Load-Deflection Curves

Digital Image Correlation System for Wall Displacement

Lateral Load Analysis for Piles with *p-y* Curves

P-multiplier Concept For Proximity of the Wall

Measured and Computed Load-Deflection Curves

P-multipliers from All Tests - 12 inch Piles

Induced Force on Reinforcements

Effect of Lateral Load on Tensile Force

Effect of Transverse Distance on Tensile Force

Schematic of Pile-Reinforcement Interaction

Parameters Affecting Max. Reinforcement Force

- P = Applied lateral load (kips) σ = Vertical Stress (psf)
- T = Transverse distance from load point (Normalized by D)
- S = Distance Behind the wall (Normalized by D)

Statistical Regression Equations Ribbed Strip Reinforcement

$$\Delta F = 10^{\wedge} \left(0.13 + 0.028P - 2.2x10^{-4}P^2 - 0.01\frac{T}{D} - 0.0021P\frac{T}{D} - 0.031\frac{S}{D} \right) - 1$$

Where:

 ΔF is the maximum tensile force induced in the reinforcement (kips), P is the pile head load (kips),

T is the transverse distance from the pile (in),

S is the distance from the back of wall to center of pile (in),

D is the pile diameter (in),
Log Measured vs Log Computed Induced Tensile Force All Welded Wire Reinforcement – 5 wire grid

Statistical Regression Equations All Welded Wire Reinforcement

$$\Delta F = 10^{\wedge} \left(-0.04 + 0.027P - 2.7x10^{-4}P^2 + 5.7x10^{-4}\sigma_V - 2.6x10^{-7}\sigma_V^2 - 0.08\frac{T}{D} \right) - 1$$

Where:

 Δ F is the maximum tensile force induced in the reinforcement (kips), P is the pile head load (kips), σ_v is the vertical stress on the reinforcement (psf), T is the transverse distance from the pile (in), D is the pile diameter (in),

Measured vs Computed Induced Tensile Force All Strip Reinforcement – Single strip

"...all models are approximations. Essentially, all models are wrong, but some are useful. The approximate nature of the model must always be borne in mind"

-- George E. P. Box Eminent Statistician

Conclusions Regarding Piles Near MSE Walls

- Significant reductions in lateral resistance as piles are placed closer than about 4D from the wall
- Simple p-multiplier approach can account for reduction in lateral resistance
 - P_{MSE} = 1.0 for S > 4D
 - P_{MSE} decreases linearly for smaller spacings
- Maximum reinforcement force:
 - Occurs near the pile location
 - Increases with applied load
 - Increases as pile is placed closer to wall
 - Decreases with transverse distance from the pile
 - Statistical regression equations can account for \approx 72% of variation

Questions?

Kyle Rollins: Civil & Construction Engineering Brigham Young University rollinsk@byu.edu