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Increased Exposure to Wildfire Smoke
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Cumulative smoke-related pollution exposure 

Axios.com

• Increased wildfire events impact both the 
climate and human health.

• Short term effects: Eye, nose, throat, and lung 
irritation, runny nose, coughing and sneezing.

• Long term effects: Asthma, chronic bronchitis, 
cardiovascular damage, and increased 
mortality in susceptible populations.



Average Wildfire Smoke Days
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• Smoke days—defined as a day with overhead 
smoke measured through satellites. 

• Wildfire in the contiguous U.S. mostly comes 
from the western part and Canada.

• Dark spot in Kansas is Flint Hills—has a lot of 
prescribed burns.

climatecentral.org



Smoke Impacts on Climate
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Meng et al., 2019, Sci. Chi. Earth Sci. 



Radiative Impact of Pollutants
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Naik et al., 2021, IPCC 

Well mixed greenhouse gases

Short lived gases

Aerosols and precursors

Black Carbon (BC):
• An optical definition for soot
• Large errors in radiative forcing

Organic Carbon (OC):
• Low volatility organic material
• Low/No absorption at long 

visible wavelengths



Carbonaceous Aerosol Classifications
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Pöschl, 2003, Anal. Bioanal. Chem.

• Carbonaceous aerosols are generated during 
incomplete combustion: biomass and fossil fuel 
burning 

• Black carbon (BC):
• Predominantly emitted during flaming
• Refractory material
• Strong visible light absorption

• Organic carbon (OC):
• Primarily emitted during pyrolysis and 

smoldering
• Wide range of refractory properties
• Brown carbon: subset of OC absorbs strongly 

at lower visible and ultraviolet wavelengths

Brown Carbon (BrC)



Aerosols from Wildfires
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• Biomass burning emissions are one of the largest sources of organic aerosol

• Mixing state of OC and BC makes it harder to separate their optical properties
• Difficult to isolate OC and BC light absorption

• OC optical properties change with atmospheric processing

Alexander et al., 2008, Science 

Spherical OC BC aggregate

epa.gov

External mixing Internal mixing More realistic mixing



Optical Property Measurements
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• Filter-based – Aethalometer, Particle Soot 
Absorption Photometer, Tricolor Absorption 
Photometer

• In-situ – Photoacoustic spectroscopy, difference 
between Extinction and Scattering (nephelometer)

• Electron Energy Loss Spectroscopy (EELS) 



Fire Influence on Regional to Global Environments 
and Air Quality (FIREX-AQ)
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Sampled Fires Across the Western U.S.
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Research Questions

1. What factors control the optical properties of organic aerosols 
from wildfires?

2. What is the dependence of these properties on BrC chemical 
composition?
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Aerosol Light Absorption at Sampling Locations
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Dark Particles on Microscope Grids
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All particles “Dark” particles in red

Soot/BC



Electron Energy Loss Spectroscopy (EELS) of “dark” BrC
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Performed at Oakridge National Lab

(1/50)th actual value



Refractive Index from Single Scattering Signal
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Spectral Refractive Index of dark BrC
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kall fires = 9.7(λ-0.762) kHigher BC fraction = 7.9(λ-0.65)
kLower BC fraction = 57(λ-1.08)

λ is in nm 

(Scattering)

(Absorption)



Optical Properties
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• The single scattering albedo (ratio of scattering 
coefficient to extinction coefficient) for these 
particles was 0.38 ± 0.03.
• For comparison soot has SSA between 0.1 and 0.3.



Reactor to Simulate Atmospheric Processing
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Potential Aerosol Mass (PAM) reactor



Simulated Aging Increased Light Absorption

• Processing through a PAM reactor 
resulted in increased light absorption 
by the particles.

• Propagated errors were high due to 
uncertainties in PAM measurements.
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Chemical Composition Measurement
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Composition Measurement—Thermal-Optical Analysis
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Chemical Composition of Smoke
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Extremely Low Volatility OC
Low Volatility OC
Semi-volatile OC
Intermediate-volatility OC



Isolating OA light absorption
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• Measuring organic aerosol (OA) absorption:
• Collect aerosols on a substrate

• Extract organics into a solvent

• Measure light absorption by dissolved BrC molecules (chromophores) 

Extraction Filtration

UV-Vis spectroscopy

Punch from the filter

Solvent-phase light absorption 
coefficient

Solvent: Water/Methanol

Shetty et al., 2019, Atmospheric Chem. Phys.



Difference in Particle and Solvent Light Absorption
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• A factor of 2 was typically used for corrections. 
• I previously showed that the factor may severely underestimate light absorption by OA

• Absorption coefficient by OA particles (babs,OA) is:

𝑏𝑎𝑏𝑠,𝑂𝐴 =  න σ𝑎𝑏𝑠 . 𝑛𝑑 𝑑𝑝 . 𝑑 𝑑𝑝

The absorption cross section (σabs) has units of m2 while the size distribution function (nd(dp)) 
has units of #/(cm3.nm). So, babs,OA has units of Length-1 (order of Mm-1)

Washenfelder et al., 2015, Geophys. Res. Lett.
Shetty et al., 2019, Atmospheric Chem. Phys. 



Light-absorption by Soluble Brown Carbon (BrC)
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• The absorption coefficient by both the 
methanol-soluble (MeS) and water-
insoluble (WI) fraction of BrC were 
positively associated with low-volatility 
organic carbon (LVOC) concentrations.

• Samples with higher BC concentrations had 
greater light absorption at similar 
Extremely-low/LVOC concentrations.

• Likely that higher temperatures that lead to more 
BC formation are also conducive to forming BrC 
with greater light absorption. 

TOA – Thermal Optical AnalysisToF-MS – Time of Flight Mass Spectrometry



Most Absorbing Compound Groups
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• Through a multi-variate regression, we 
found the most light-absorbing compounds 
groups were:

•  Polycyclic Aromatic Hydrocarbons (PAHs),

•  Aromatics, and 

• Nitrogen-containing Organics (NOCs) 

PAHs Aromatic NOCs



D-BrC Across the Globe
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• Models based on emission inventories and satellite 
measurements are predicting presence of d-BrC across 
the globe.

• Values seem low since these are annual averages, and 
d-BrC generating events are transient.

• Predictions over Africa, Siberia, and Southeast Asia 
were ~4 μg/m3 which is around 20% of total OA from 
biomass burning. 



Global Implications
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• Including d-BrC into radiative calculations reveals a net 
warming by organics.

• The warming is comparable to that of Black Carbon.

• These values are likely biased low since emission 
inventories used in the model are conservative. 



Key Takeaways
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1. What factors control the optical properties of organic aerosols 
from wildfires?
• The d-BrC emissions absorbed light even at longer wavelengths and the 

absorption increased with BC fractions.

• The soluble brown carbon concentrations were associated with BC 
indicating that they may be co-emitted in fires.

2. What is the dependence of these properties on BrC chemical 
composition?
• PAHs, Aromatic compounds, and Nitrogen-containing organics were the 

dominant constituents of BrC.

• Lower volatility organics are efficient light-absorbers. 

Shetty, Nishit, et al. Environmental Science: Atmospheres 3.9 (2023): 1262-1271. (Highlighted on journal cover)
Chakrabarty, Rajan K., Shetty, Nishit, et al. Nature Geoscience (2023): 1-6.
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