HOW EFFECTIVE ARE STREAMBANK STABILIZATION PROJECTS?

Tony Layzell, Kansas Geological Survey

Stream restoration

- Stream restoration projects typically include components such as streambank stabilization, alteration of both flow regimes and sediment supply, floodplain reconnection, adjustments to channel morphology, riparian zone management, and in-stream habitat improvement.
- Variety of scales (i.e., site-specific, reach, and basin scale), most projects are small scale and executed without an overarching framework, including plans for long-term monitoring.
- Resulted in a poor understanding of the effectiveness of different types of restoration methods in varying locations and over time.

Layzell et al. 2022

Wohl et al. 2015

The problem (in Kansas)

Reservoir sedimentation

- \$20 million dredging operation in 2016
- 2.3 million m³ removed

The problem

Where does the sediment come from?

The solution (?)

Streambank stabilization (upstream)

Site-specific scale

Cottonwood River

Methods

- Multiple UAS flight surveys over three separate campaigns (2019, 2020, 2021).
 - DJI Phantom 4 Pro platform.
- Calculating the volume of material eroded at each SBS site:
- (1) A historical assessment of bank erosion prior to SBS construction (1992-2015).
- (2) Erosion between the construction date and the first UAS flight survey (*2015*-2019).
- (3) Erosion between subsequent repeat UAS flight surveys (2019-2021)

2003 Aerial Photo

2015 Aerial Photo

Results

- Post-construction erosion rates are consistently lower than preconstruction values, indicating that SBS projects have successfully reduced erosion locally at each SBS site.
- The observed variability in both pre- and post-construction erosion rates at each site is likely related to differences in stream discharge between survey periods.

Need accurate and representative baseline data

62-94% decrease in sediment yield on average

68-78% decrease in sediment yield on average

Post-construction erosion processes

- Erosion of lower streambank
- Rotational failures

Up to 4.5 m lateral retreat, 1.8 m vertical erosion

Timing of first flood event

"Break in" period = 1-3 years

Reach scale

Trisha Moore, Kari Bigham, Corben Monzon

Monzon, 2024

Reach scale

Temporary effect? = 1-2 years

Downstream of C102

Watershed scale

- Where does the sediment in the Cottonwood River come from?
- Sediment fingerprinting a modeling tool that can "unmix" a composite sediment sample into its constituent source fractions

Watershed scale

• Where does the sediment in the Cottonwood River come from?

• Assess the utility of sediment fingerprinting to inform on the efficacy of streambank stabilization projects in reducing sediment loads at the watershed scale.

45% mean bank fraction

58% mean bank fraction

- Disproportionally large sediment loads occur during high-magnitude flood events.
- Targeted management should include not only streambank stabilization, but also practices aimed at reducing upland erosion, particularly cropland.

Ongoing & future work

John Redmond cores

Hydrograph

Perry Lake (2004-2024)

6/30 tracers statistically informative • TN, TOC, TC, Sr, Ti, Cs-137

Sediment sourcing mainly function of land useExcept Perry Lake – 38% channel banks

45/81 SBS projects completed

Conclusions

Site-specific scale

- SBS projects appreciably reduced local-scale erosion at the stabilized sites (62-94% reduction in sediment load).
- Need accurate and representative **baseline data**.
- Evidence of erosion of the lower bank above toe protection.
- Effectiveness is subject to a "break-in" period (1-3 years).

Reach scale

- HEC-RAS modeling indicates **increase stream power** at downstream meander bends.
- Model results confirmed in the field.
- Downstream meanders appear to adjust after 1-3 years.

Watershed scale

- Banks contribute 45% of sediment load during storms
- Targeted management should also include practices aimed at reducing upland erosion.

Clements Bridge

