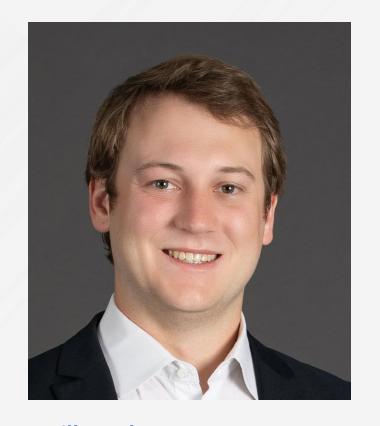


Tips for the Successful Development of Renewable Natural Gas Projects

75th Annual Environmental Engineering Conference


Scott Martin, PE & Will Franke

Wednesday, April 16, 2025

Introductions

Will FrankeBiogas Project Engineer

Scott MartinRNG Practice Lead

Presentation Overview

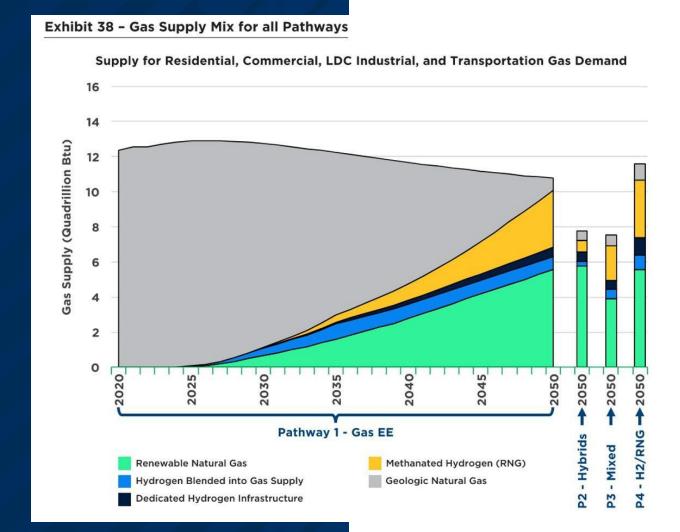
- What is RNG?
- RNG Overview and General Project Elements
- Why Co-Digestion
 - Sustainability Drivers
 - Market Drivers
 - Capacity & discharge considerations
- Developing Manure RNG Projects
- RNG Market Discussion
- RNG Project Examples

		Typical Co	Pipeline Specification		
Constituent	Units	Manure / Organics	Landfill Gas	Municipal WWTP	
Methane	% by vol	55-70	45-55	55-70	>94% (950 btu/cf)
Carbon Dioxide	% by vol	30-45	25-40	30-45	<2%
Oxygen	% by vol	0-1	0.25-3	0-1	<0.001-0.2
Temperature		At the Po	<100-120°F		
Water Vapor		1	≤ 7 pounds per million scf		
Hydrogen Sulfide	ppmv	200 -10,000	<1,000	200-3,000	< 4 ppm
Siloxanes	ppmv / ppb	Not Typical	Typical	Typical	0.01-1 mg Si/m ³

What is Renewable Natural Gas (RNG)?

Biogas can be cleaned, conditioned and injected into natural gas pipelines as Renewable Natural Gas (RNG).

RNG can be used as a feedstock for:

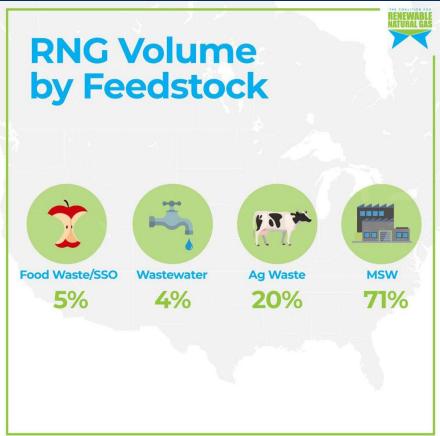

- Transportation
- Fuel Refining
- Pipelines
- Power Generation
- Manufacturing

Biogas Sources

- Agriculture
- Food Waste
- Wastewater
- Landfills

What is Renewable Natural Gas (RNG)

To meet Net-Zero Goals, The American Gas Association predicts that RNG will account for 51% of natural gas supply by 2050.



Active RNG Projects

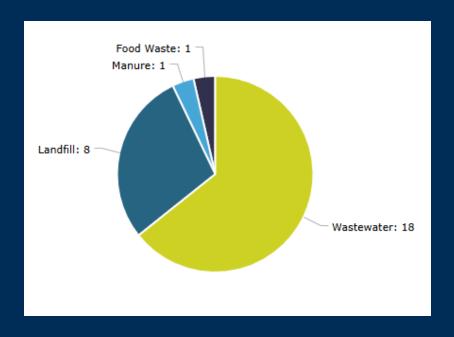
Active RNG Projects

RNG PROSPECTS

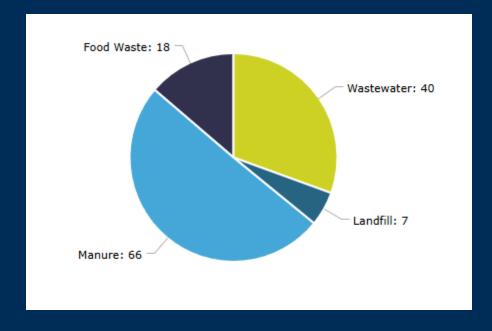
Operational Biogas Systems: 2,478

- 566 RNG
- 1,418 Electricity
- 615 on Farm
- 1,169 Wastewater
- 114 Food Scrap
- 580 at Landfills

Potential New Biogas Systems: 24,000


- 17,000 on Farms
- 4,000 Wastewater
- 1,700 Food Scrap
- 740 at Landfills

Information Courtesy of <u>Championing</u> the Biogas Industry | American Biogas Council



Biogas Use Prospects - Kansas

Current Systems

Potential Systems

Biogas & RNG Project Elements

Feedstock

- Gas Collection Systems
- QualityManagement(Digestion)

Digesters

- Design
- Digestate / odor management
- Operations consulting

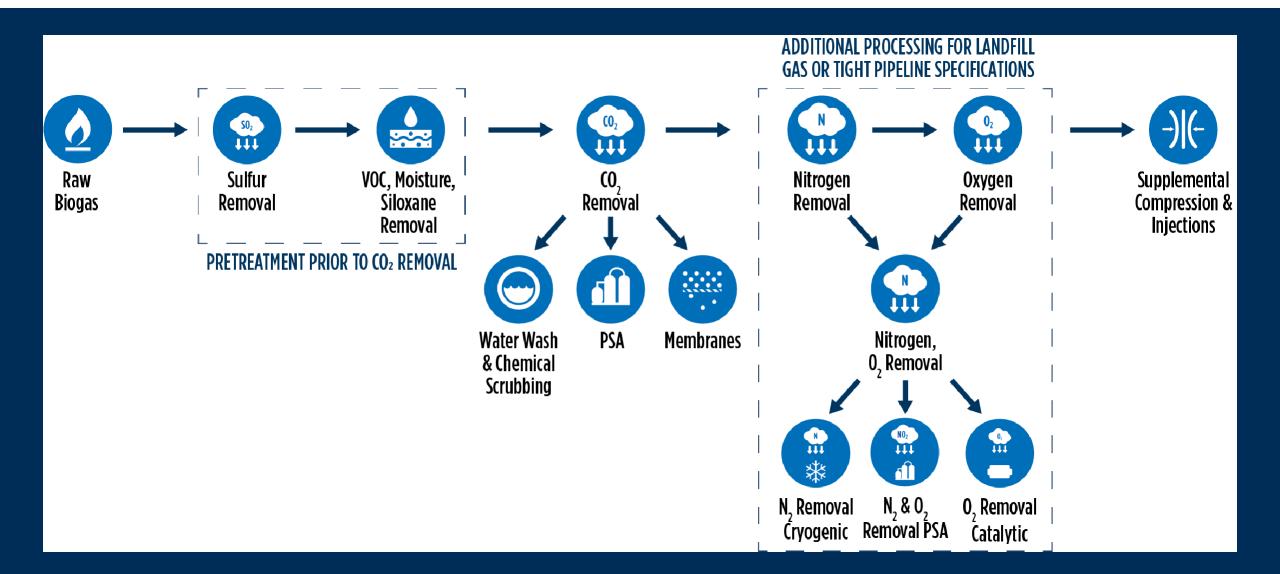
Gas Processing

- Pre-treatment
- Upgrading
- Compression
- PHA

Gas Logistics

- Interconnects
- Metering stations
- ROW acquisition
- Route permitting

Electrical

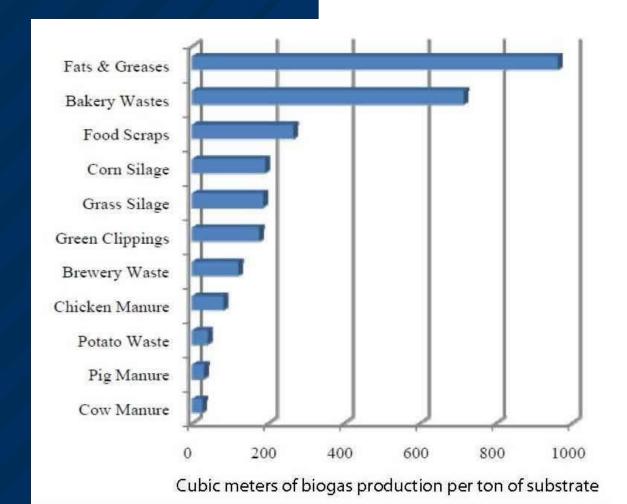

- Interconnects
- Substations
- Electric generation
- Standby power

Compliance

- Air
- GHG
- Waste
- Wastewater

Gas Treatment / Upgrading Options

WWTP and Co-Digestion Considerations



Co-Digestion of Food Waste In Kansas

- ~ 600k Tons of food waste landfilled /year.
 If digested, it would offset approximately:
 - 200k MTCO2e.
 - 22 Million Gallons of Gasoline
 - 42,000 Vehicles Annually
 - Baseline: National Average (Mix of landfills with and without collection systems)

Co-Digestion of Food Waste In Kansas

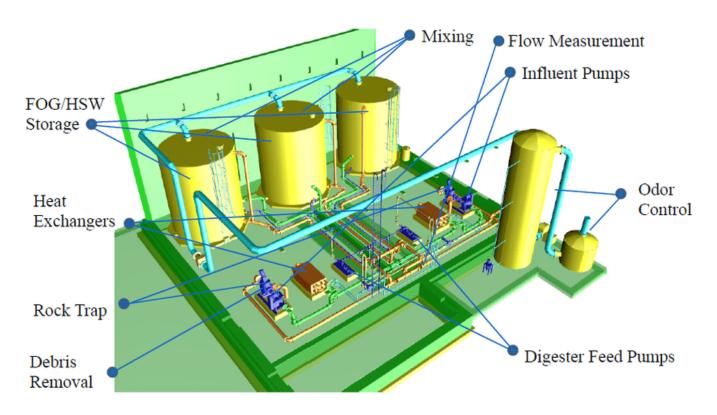
Can bring in additional revenues / reduces costs through:

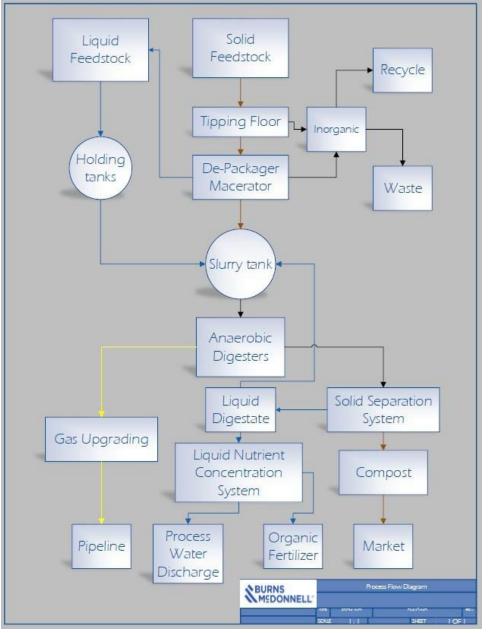
- Increased biogas production
- Environmental Attributes
- Tipping fees waste acceptance

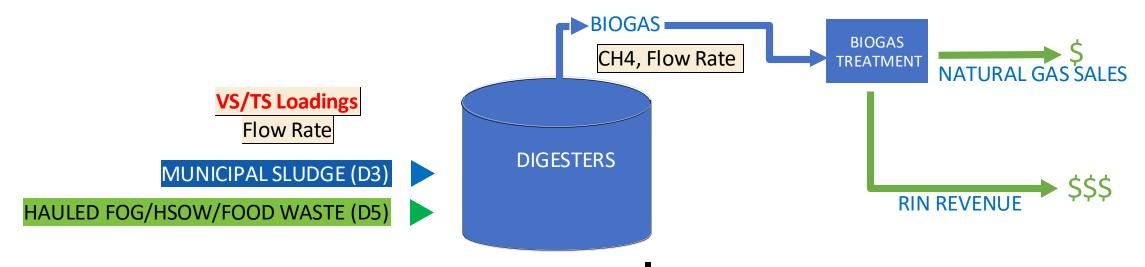
Co-Digestion Considerations

Collection & Pre-Processing

- Pre-consumer wastes, FOG (easier)
- SSO (varies by source, but requires training and learning new behaviors)
- Grit / contaminant removal, more labor intensive, more energy


Effluent Management


- Can increase N, P, and dissolved solids (impacts to treatment capacity)
- Digestate characteristics altered, contamination could alter current beneficial uses



Co-Digestion Pre-Processing

Co-Digestion – RIN Apportionment

Method I

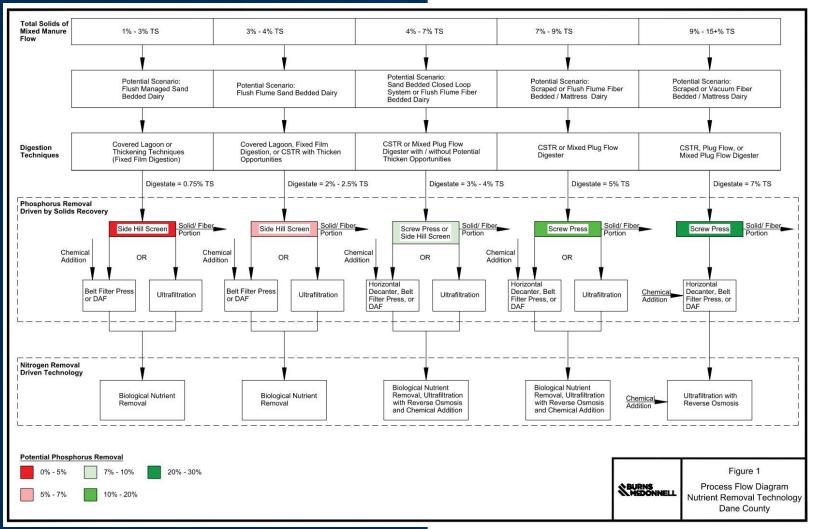
- Biogas Production Data with Sludge (cellulosic only)
- Calculated cellulosic converted fraction from data
- Difference in Total Biogas and Converted Cellulosic Fraction = Non-Cellulosic Fraction (D5)

Method 2

- Use a predetermined cellulosic converted fraction
 - 0.15 kg methane / kg of VS
 - Difference in Total Biogas and Sludge Biogas = Non-Cellulosic Fraction (D5)

Developing Manure RNG Projects

1


Appendix A - Matrix Ranking Criteria

			1					
BURNS MEDONNELL	_L		Ranking Criteria					
State: Wisconsin	Criteria	Imp. Factor						
Host Site Development								
Land Availability Available Space and Transportation Infrastructure to Site a Community Digester	Land Availability	3	% of land zoned for agriculture, 3 > 60%, 2 = Between 60% - 40%, 1 = Between 20% - 40%, 0 < 20%					
	Vehicle Access	3	3 =State/US Highway, 2 = County Highway, 1 = Local Roads					
	Interstate, Rail, or Major Highway Access	1	3 = Yes; 1 = No; If the township has one and not the other, 2 can be used.					
	Grading Considerations	2	3 = Flat; 2 = mostly flat; 1 = flat portions, some hills; 0 = mostly hilly					
Population Density	Population Density and Growth	2	3 => 50 people/sq. mile; 2 = Between 275 - 50 people/sq. mile; 1 = Between 275 - 1700 people/sq. mile; 0 =< 1700 people/sq. mile					
Utility Availability	Availability of 3-Phase Power Lines	3	3 = Yes; 0 = No					
	Availability of Natural Gas Pipelines	3	3 = multiple (5+) pipelines available, 2= several (3-4) pipelines available, 1 = pipelines (1-2) available, 0 = no pipelines in the area					
Environmental & Permitting Considerations Distance to Environmentally Sensitive Areas	Navigable Lake, Pond, River, or Stream Nearby	1	% of land that is a body of water, 3 < 0.5%, 2 = Between 0.5% - 1%, 1 = Between 1% - 2%, 0 > 2%					
	Wetlands Impacts nearby	2	% of land that is wetland, 3 < 5%, 2 = Between 5% - 10%, 1 = Between 15% - 10%, 0 > 15%					
	Distance to Groundwater	2	3 => 10'; 2 = Between 10-5'; 1 = Between 5"-3'; 0 =< 3'.					
	Nutrient Loading (TMDL)	3	% of land within the Yahra Rivershed. 3 > 85% reduction in Yahara Watershed, 2= Between 30% - 85% reduction in Yahara Watershed, 1 Yahara Watershed					
	Floodplains	1	% of land within a floodplain, 3 < 5%, 2 = Between 5% - 10%, 1 = Between 15% - 10%, 0 > 15%	Several important factor	rs to con			
	County Zoning	1	3 = Yes; 1 = No	•				
			Manure Availability	when selecting a site:				
Manure Availability Cattle and farm availability	Head of Cows per Township	3	3 = > 7,500 head; 2 = Between 7,500 - 5,000 head; 1 = Between 5,000 - 1,000 head; 0 = < 1,000 head					
	Ratio of Cows/Farms	2	3 => 300; 2 = Between 300 - 150; 1 = Between 150 - 50; 0 =< 50	 Land availability 				
	Number of Farms	2	3 = > 30 farms; 2 = Between 30 - 15; 1 = Between 15 - 10; 0 = < 10					
	•		•	111 / 1				

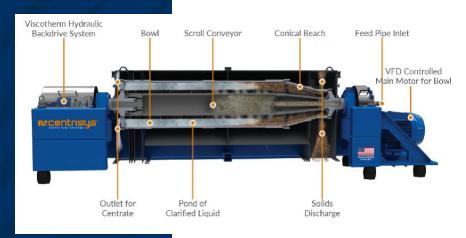
- Urban / rural environment
- Environmental & Permitting
- Feedstock availability (manure)

Manure and Nutrient Management

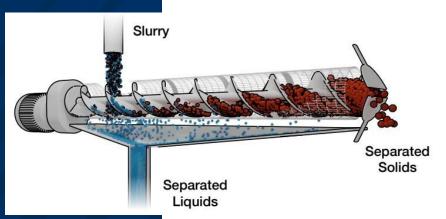
Manure Management

- How is manure collected / processed?
- The TS content of the manure will drive digestion technology

Nutrient Management (Post-Digestion)

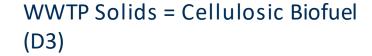

- Nutrients such as N and P can be recovered for land application or removal from the watershed.
- The solid or fiber portion of the digestate can be reused as bedding or compost
- The TS content of the digestate will drive nutrient recovery technology

Nutrient Recovery


Nutrient Recovery Technologies

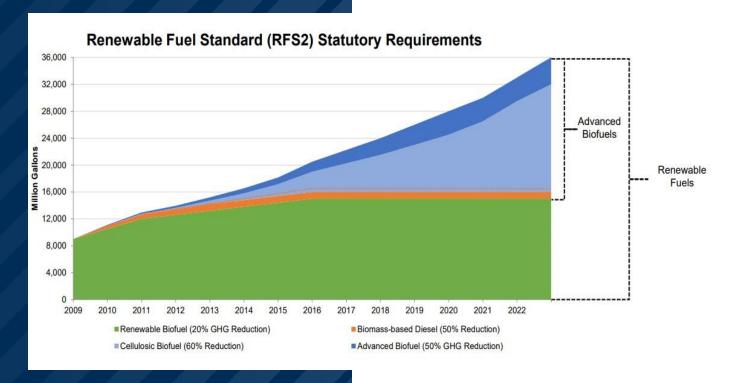
- Side Hill Screen
- Screw Press
- Horizontal Decanter
- Belt Filter Press
- Dissolved Air Floatation (DAF)

Technology selection will depend on the TS content of the digestate, the nutrients desired for recovery, and the level of nutrient removal required for discharge



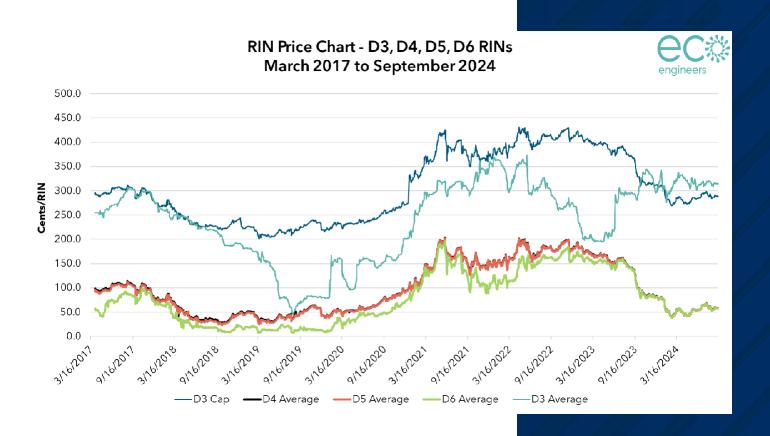
RNG Markets

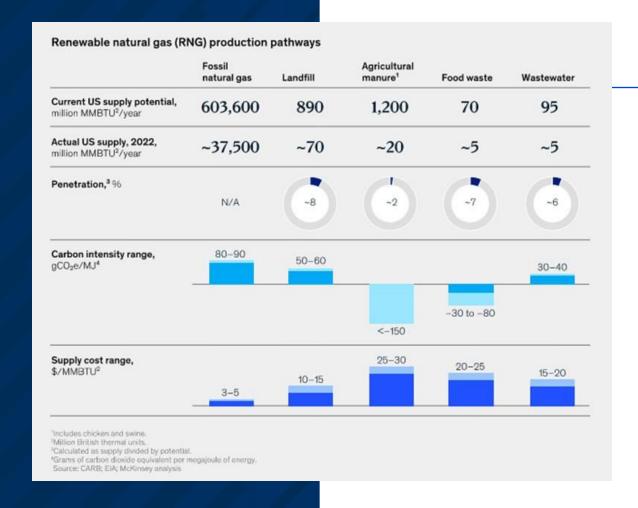
Renewable Volume Obligations (billion RINS)	2023	2024	2025
Cellulosic biofuel (D3)	0.84	1.09	1.38
Advanced biofuel (D5)	5.94	6.54	7.33


Renewable Fuel Standard (RFS)

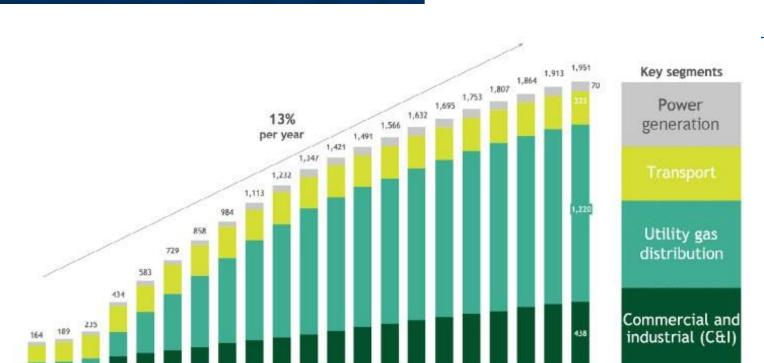
Food Waste = Advanced Biofuel (D5)

Biointermediate to include: "biogas used to make a renewable fuel other than RNG"


EPA's original goal was 16 billion gallons of cellulosic biofuel by 2023.

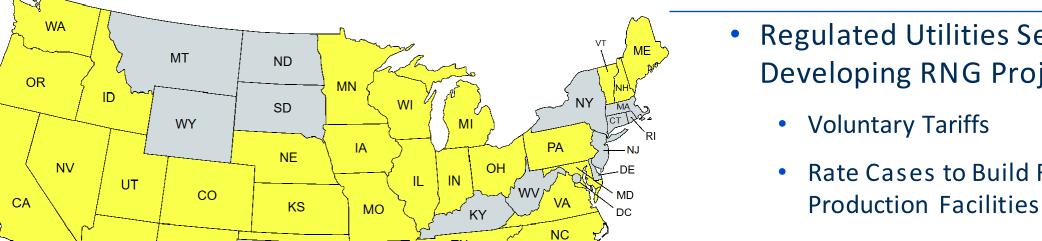


RNG Pricing as of Feb 25, 2025



RNG Supply

- Currently < 1% of Natural
 Gas
- By 2030 RNG Supply 7x
 2020 Levels (EIA)
- By 2050 RNG Supply 27x
 2020 Levels (EIA)
- Supply only at 2/3 of expected demand



RNG Demand

- Voluntary Demand
 - Renewable Thermal Certificates
 - Utility Incentives
- Regulatory Incentives
 - EPA Renewable Fuels Standard
 - State Low-Carbon Fuel Standards
- Funding Incentives
 - State grants/funding programs
 - Inflation Reduction Act

SC

GA

TN

AL

MS

OK

TX

AR

LA

ΑZ

ΑK

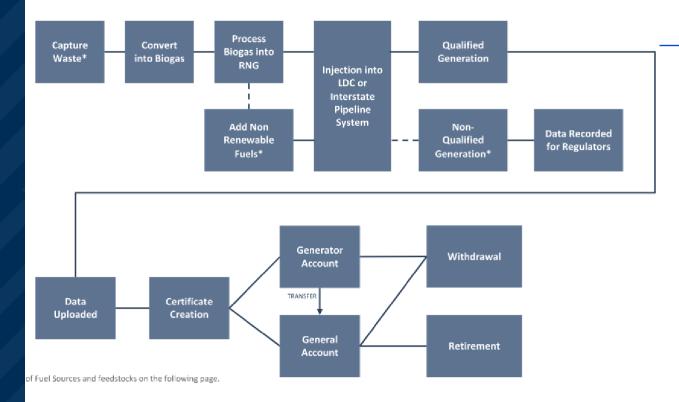
NM

Regulated Utilities Self **Developing RNG Projects**

- Rate Cases to Build RNG
- Rate Cases to Build RNG Interconnects
- Clean Fuel Standards
- Non-Regulated Utility **Counterparts**
 - **Tax Exemptions**

Kansas

Black Hills Voluntary RNG and Carbon Offset Program


\$5.00 per 20.5 Therm Block per month

The program allows residential and small commercial customers buy a set number of 20.5 therm blocks to offset natural gas emissions.

The program is currently in a pilot period that ends on December 31, 2026

RTC Process

RTC

Marketplace

Renewable Thermal Credits (RTC)

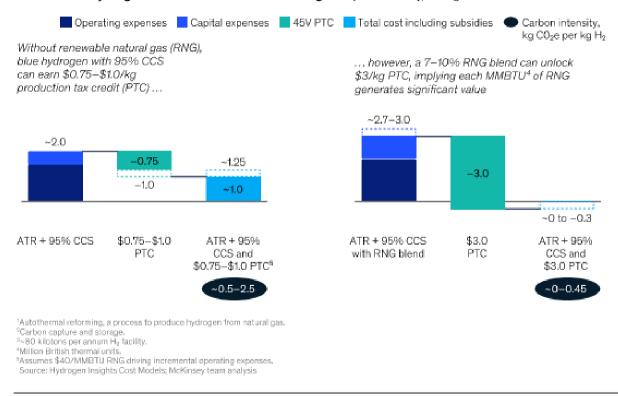

- Tracking System for Retirement of Thermal Credits
- M-RETS
- Confirmed CI Pathways

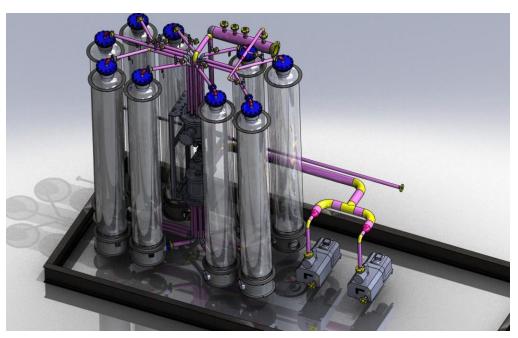
Exhibit 2

Renewable natural gas can potentially unlock incentives for low-carbon hydrogen production.

Cost of blue hydrogen with ATR1 with CCS2 including 45V (illustrative),3 \$/kg

Pathways to commercial liftoff: Clean hydrogen, U.S. Department of Energy, March 2023.

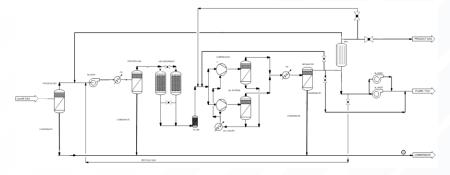
Other Market Drivers for RNG


- H2 Production to Receive to PTC
- Biogenic CO2 as a Byproduct
- RNG to Other Countries
- SAF
- Sustainable Fertilizers/Nutrient Management

RNG Project Examples

CASE STUDY

Biogas Upgrade to Renewable Natural Gas


Confidential Client | California

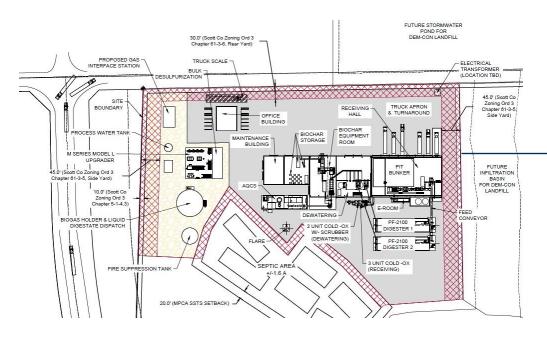
Engineering Services

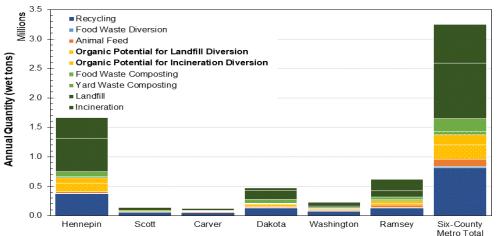
- Design, Bidding Support, Construction Support
- Startup, Commissioning and Acceptance Testing
- Weekly Monitoring of System Performance

Feedback

Municipal Wastewater Biogas

WWTP and RNG EPC




SPIRE | KCMO P3

Progressive Open Book EPC

- Current THP Project
- Long History Working at WWTP
- 900 Scfm
- Supporting Utility as Design-Build Partner
- RNG Process Evaluation / Design
- Permitting
- Construction / Commissioning

CASE STUDY

Food Waste to RNG

Dem-Con

Feasibility Study & Construction Documents

Developed biogas, solid, and liquid quantity and characteristics used for the market analysis

End-Use Options Biogas:

- Electricity
- Heat
- Local transportation fuel
- RNG to Pipeline

Digestate:

- Pelletizing
- Land application
- Compost
- Treatment at WWTP
- Pyrolysis

Dairy RNG Program

Confidential Client | Multiple States Brownfield & Greenfield Design

- 14+ Dairy Sites
- 3,000 10,000 Head
- Gas Upgrading Design Standardization
- Manure / Digester Design Standardization
- Pipeline / Interconnect Design
- PHA/HAZOP
- Permitting Support
- 3 Brownfield Sites with Existing ADs
- 11 Greenfield Sites

Thank You