75th Annual Environmental Engineering Conference Wednesday, April 16th: 1:45 – 2:30 Jason Beyer & Peter Gaskamp, PE

AGENDA

- 1. GIS Data Validation & Data Collection for Pipe Replacement Prioritization
- 2. Machine Learning for Predicting Future Main Break Locations / High-Risk Water Mains
- 3. Risk Analysis modeling to prioritize Transmission Mains for Condition Assessment
- 4. Transmission Main Condition Assessment

ABOUT WATERONE

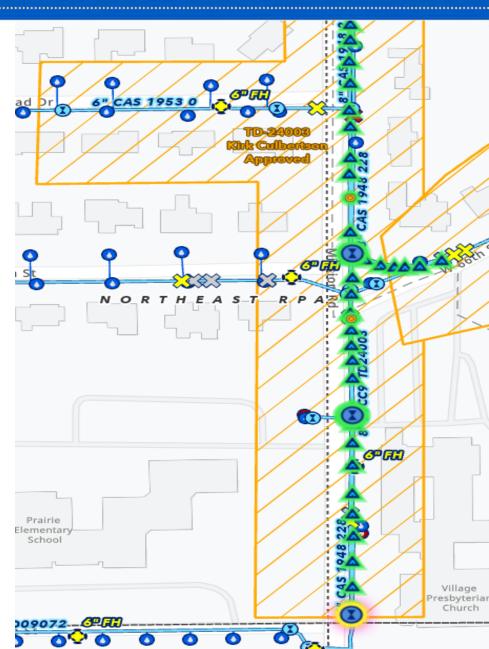
- Founded in 1957
- Independent, non-profit public water utility
- Serves 17 cities throughout Johnson County
- The largest water utility in the state of Kansas

WaterOne's Infrastructure at a Glance

Miles of Main		rants	Residential Connections			
5. 180.33 Transmission Main [Potable]	<u>\$</u> 19	,029	Commercial Connections 14,388 [includes Exempt, Special Agreement, Wholesale]			
Miles of Main 2,652.79 Distribution Main	System Valves 50,678	Control Valves 4,922	Main Breaks Last Month 39 212 this year			

April 17, 2025

Data Cleanse & Data Validation


- Validated location and info of 8,000+ main breaks
- Validated 65,000+ segments of main for install date, material, diameter and project name
- Required all field crews to capture a GPS shot on all main breaks and every asset installed on construction projects (2018)
 - Used a mix of agreed upon required fields and default values in the collection software and extensive training to gain crew buy-in

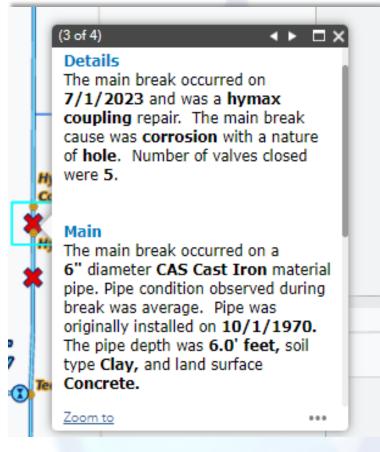
Real Time GPS & GIS Editing

- All assets are GPS'd in real time by either our in-house construction crews or inspectors monitoring contracted crews
- All assets then added to GIS in real time by editing staff
 - No longer referring to as-builts or paper forms when posting
- WaterOne VIEW Internal GIS Mapping

April 17, 2025

EOS Gold Base Station

EOS Arrow Gold

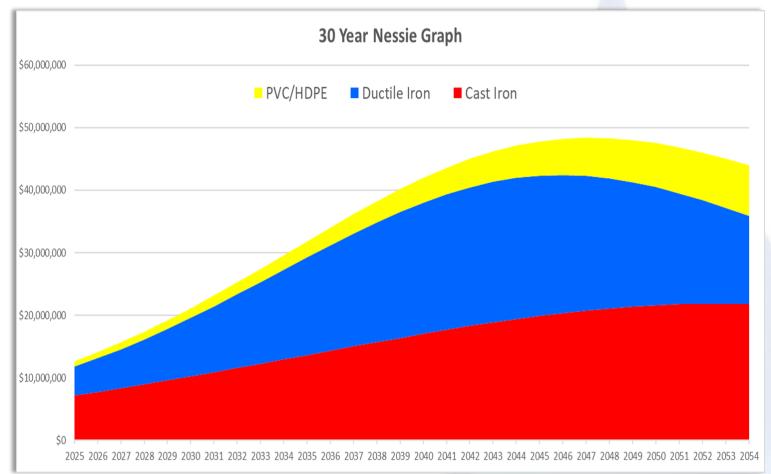


Field Maps

Comprehensive Main Break Data

- Main break data complete for past 10 years
- Repair date, type of repair, cause, depth, soil type, surface type, observed condition & repair cost
- Symbology & pop-up info helps crews easily identify break type and make informed decisions

Small Diameter Water Main Replacement Prioritization



Division

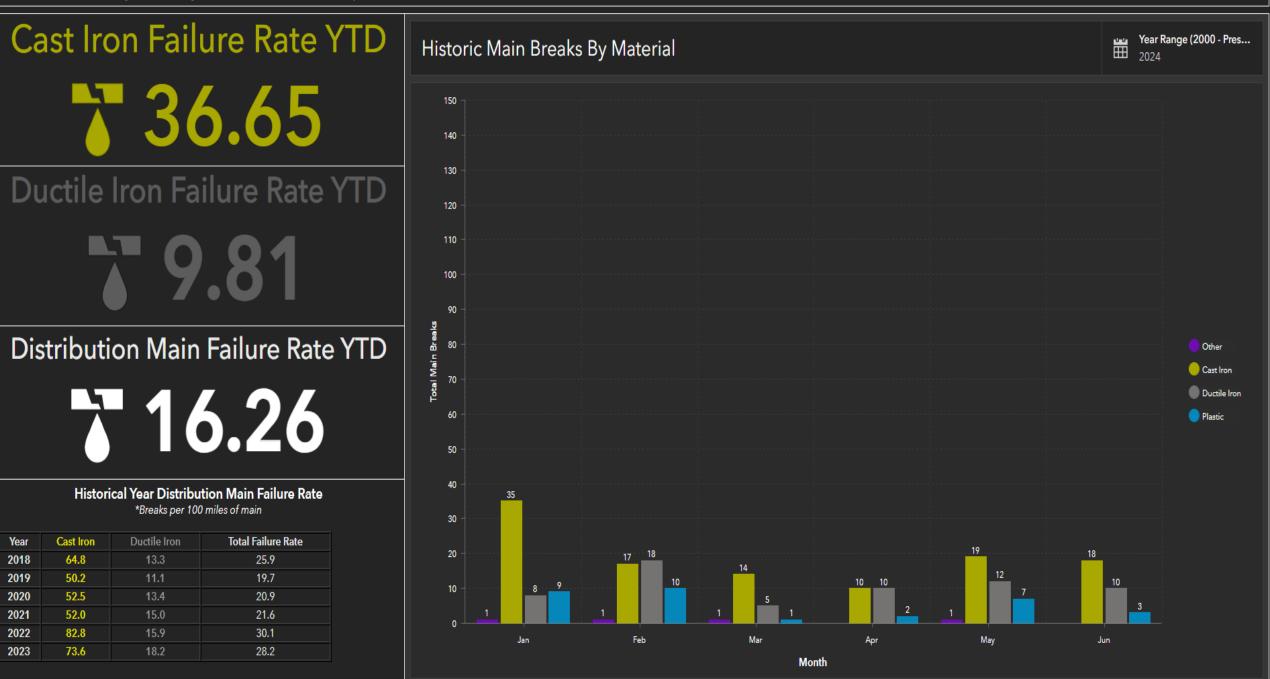
Future Miles/Cost of Replacement

- 2019 11.5 mi (\$8.5M)
- 2025 17.1 mi (\$15.7M)
- 2030 24.8 mi (\$26.8M)
- 2042 36.8 mi (\$57.5M)

WaterOne

Risk Criteria for Distribution Mains

- <u>Likelihood of Failure</u>
 <u>(LOF)</u>
 - 1. Pipe Diameter (16-inch and smaller)
 - 2. Remaining Useful Life
 - 3. Pipe Lined Y/N
 - 4. Soil Type
 - 5. Pressure
 - 6. Main Break History
 - 7. Main Breaks Within Previous Year
 - 8. Valve Criticality


Water<u>One</u>

9. ML Score (Top 1%)

- <u>Consequence of Failure</u> <u>(COF)</u>
 - 1. Proximity to Large or Critical Users
 - 2. City Improvement Projects
 - 3. Location of System Upgrades (Master Plan)
 - 4. Location of System Expansion (Master Plan)
 - 5. Mains in Pavement (50% or more)
 - 6. Main Break Repair Costs

	ring Range —					Score Method
	Breaker	Range	Score	No.	Length (Miles)	Range
•	10	<= 10	10	971	32.87	O Unique Values
	20	10 < x <= 20	8	12427	458.22	Classes: 5 🗸
	30	20 < x <= 30	5	11988	483.96	Cid33C3. 5 V
	75	30 < x <= 75	2	24059	998.40	Equal Interval
	101	75 < x <= 101	1	16571	645.64	Natural Breaks
	[blank value]		0	2472	207.65	Quantile
						Score Chart
						Histogram

Distribution Engineering Dashboard Desktop

AI/ML Model Pilot Program

To be EVEN MORE proactive in our replacement program, In 2021, Engineering and GIS staff started meeting with vendors to better understand the data requirements and capabilities of Machined Learned (ML) models.

> The decision was made to pursue a pilot program using 250 mi (10%) of water main

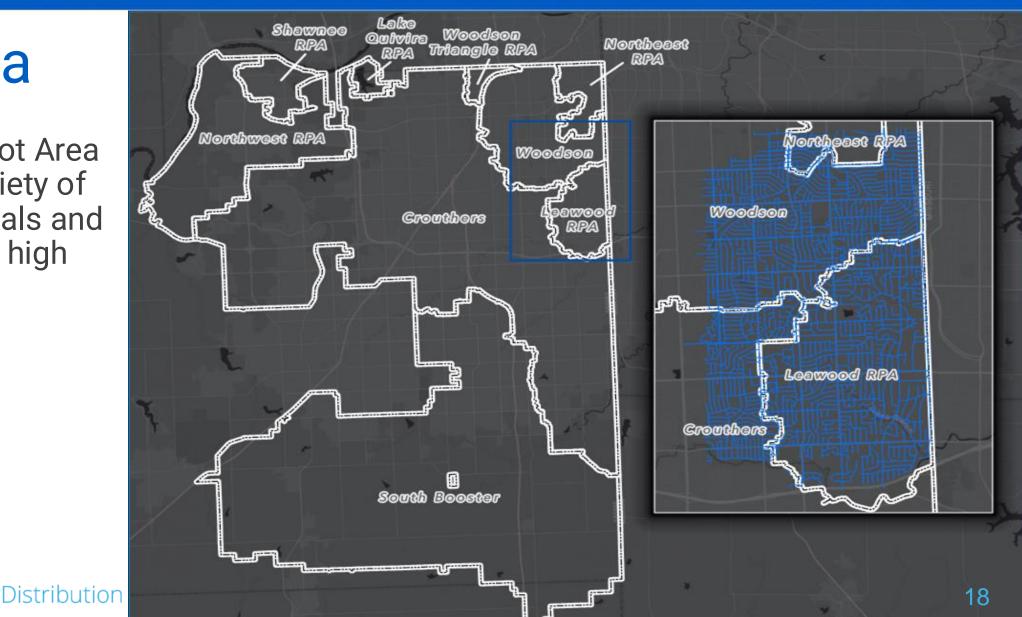
Rezatec, our chosen vendor, had a unique approach to building an AI/ML model that we felt was a perfect fit for WaterOne and a joint ventured pilot program.

What to Consider Before Tackling AI/ML

> How much ownership/decision making do you want to have with the data?

> How will you validate the results? / How will you measure the success of the model?

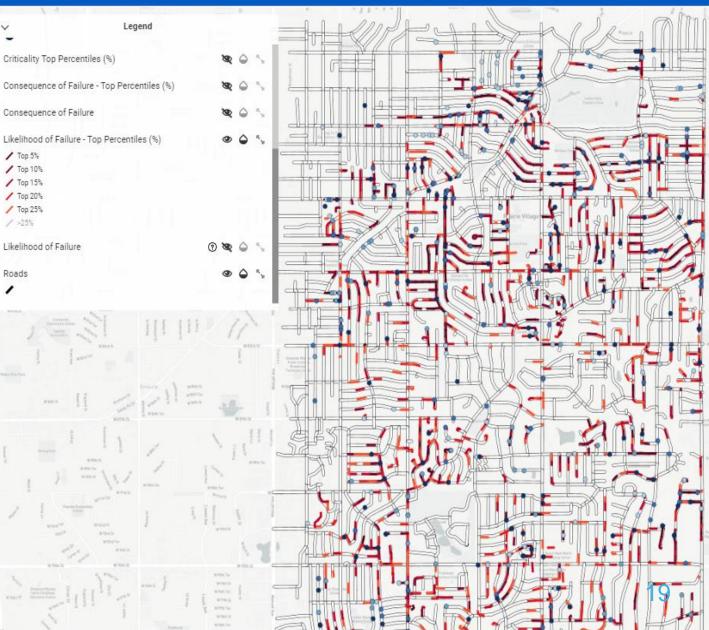
> How will you utilize or incorporate the data?



April 17, 2025

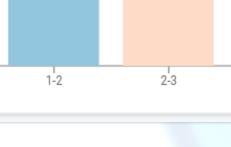
Pilot Area

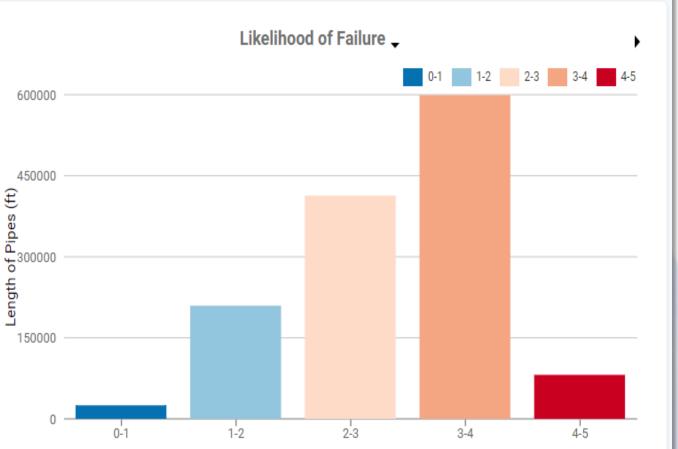
 The chosen Pilot Area had a good variety of age and materials and has a relatively high break rate


WaterOne

Building the Model

- Validation model was built using:
 - > 3 years of main break data while the 4th year was withheld
 - Distribution water main dataset which included material, diameter, age, etc.
 - Satellite data specifically looking at changes in ground motion and vegetation growth as well as historic climate data


Validating Results


- Criteria:
 - Correctly predicting at least 70% of the breaks in the top 30% highest risk mains
 - We each had a week to separately validate results
- **Results: First Model Run**

WaterOne

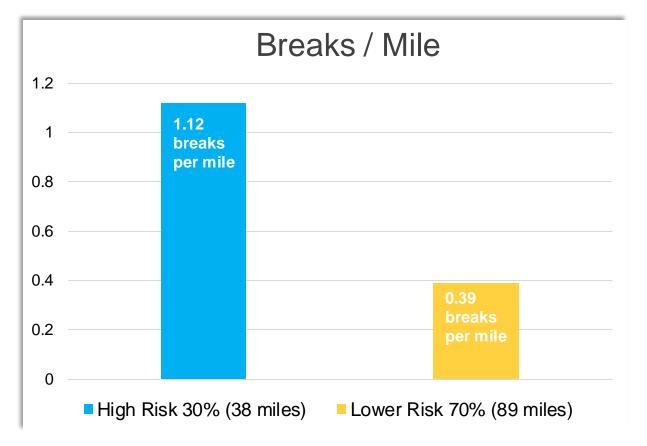
- Achieved 73% Accuracy
- But model was incorrectly associating newly installed water main with old/retired breaks

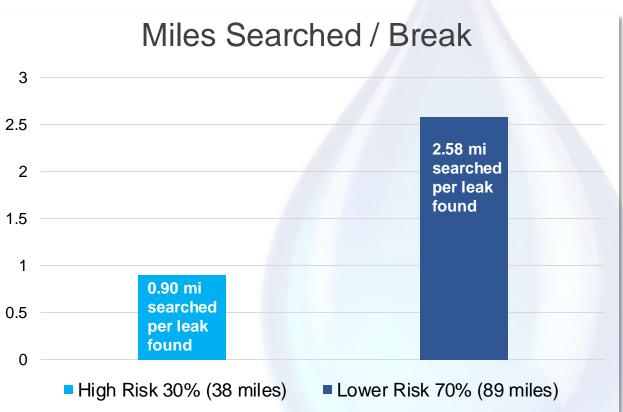
Distribution Division

Digging Through the Results

Тор 30	% Highest Ris	k Pipe
Material	Length (ft)	% of Pipe
Ductile & Cas	291,650	72%
Plastic	102,779	26%

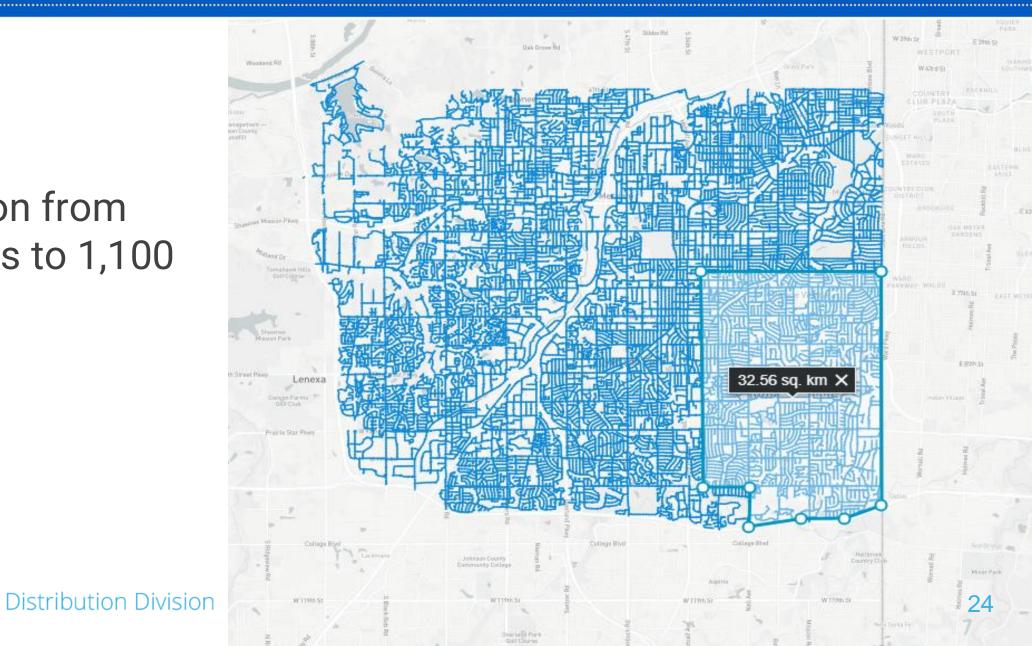
Main Breaks	During	g Valida	ation Period
Material		#	of Breaks
Ductile & Cas			163
Plastic			3
Тор 5%	High	est Ris	k Pipe
Material	Leng	th (ft)	% of Pipe
Ductile & Cas	44,:	327	67%
Plastic	21,6	695	33%


Digging Through the Results


- Second Model Run
 - Achieved 78% Accuracy
 - No Plastic pipe included in the top 30%
- 2023 Forward predicting model provided further validation

Age (years)	Material	Diameter (in)	Road Name	Valve FacilityID	Valve GlobalID	Likelihood of Failure (LoF)	LoF - Top Percentile
101	CAS	6	W 74TH ST	723324	{8C021B62	3.84	15
96	CAS	6	W 68TH ST			3.67	20
96	CAS	6	W 68TH ST			4.03	10
92	CAS	6	W 71ST TER			3.59	25
92	CAS	6	W 71ST TER			3.89	15
87	CAS	6	W 79TH ST	508614	{159D0B6B	4.08	10
84	CAS	6	W 75TH ST	502990	{9B43A721	4.33	5
84	CAS	8	SOMERSET			3.56	25
84	CAS	8	SOMERSET	666488	{83CFBD90	3.56	25
84	CAS	8	SOMERSET			3.56	25

Find More Breaks in Less Time



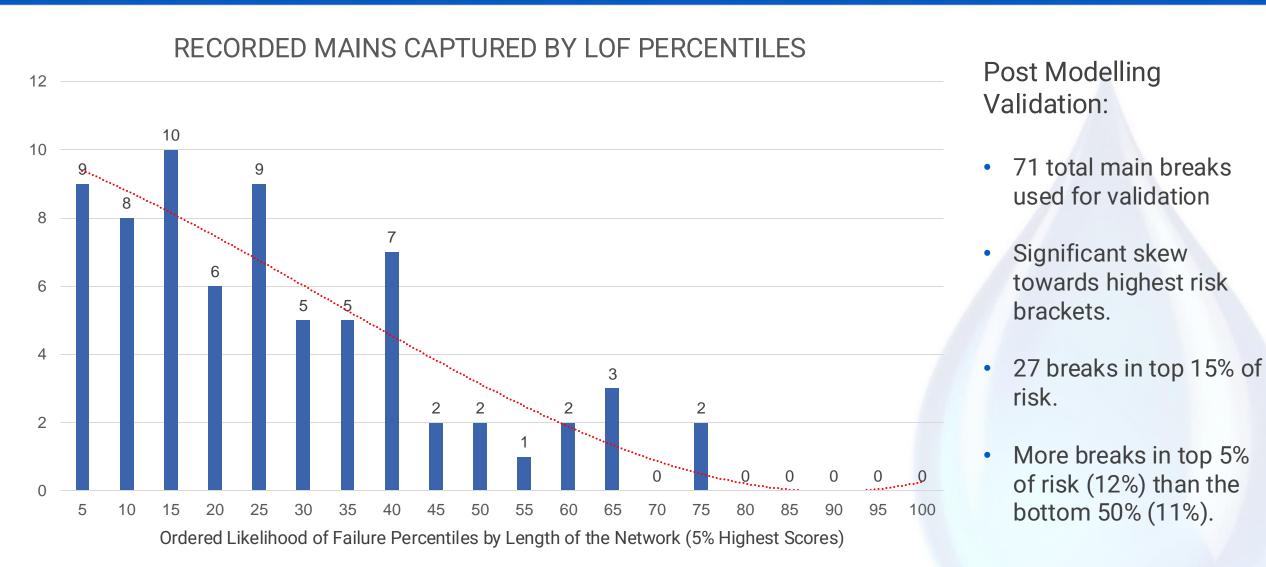
April 17, 2025

 Expansion from 250 miles to 1,100 miles

WaterOne

Avora

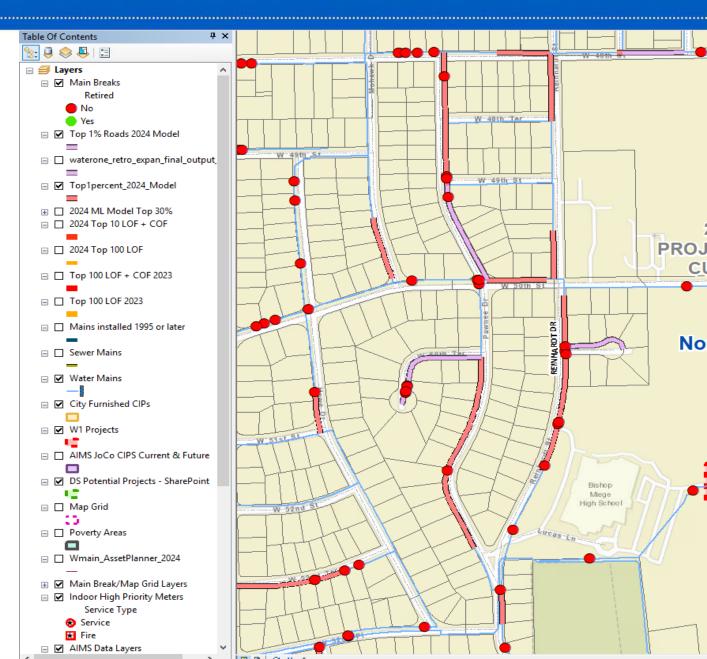
Aggregating the Data for Optimal Use


Road ID	Road Name	Length (ft)	Mean Diameter (in)	Material(s)	Max LoF	Min LoF	Average LoF	Max CoF	Min CoF	Average CoF	Max Criticality	Min Criticality	Average Criticality
3898	W FRONTAGE RD	4302.57	9.806	DIP,PVCC9	2.89	0.17	1.53	1.01	0.67	0.82	0.66	0.05	0.36
4590	ABERDEEN RD	4282.93	8.211	CAS, DIP, PVCC9	3.34	0.29	1.61	1.01	0.50	0.69	0.49	0.04	0.27
7722	LAKESHORE SOUT	3589.84	6.421	DIP,CAS,PVC	3.96	0.73	3.12	0.67	0.50	0.54	0.67	0.11	0.49
1829	W 71ST ST	3307.07	6.000	PVCC9	1.05	0.56	0.75	0.50	0.50	0.50	0.15	0.08	0.11
7503	FOXRIDGE DR	3288.22	12.000	CAS,DIP	3.15	0.25	1.64	1.01	1.01	1.01	0.92	0.07	0.48
10910	GODDARD ST	3213.38	7.840	DIP	2.90	1.07	2.04	0.67	0.50	0.66	0.56	0.21	0.39
1800	W 69TH ST	3200.39	12.000	PVCC9,HDPE	0.38	0.23	0.31	1.01	1.01	1.01	0.11	0.07	0.09
8314	BELL RD	3150.62	6.000	PVCC9,DIP,CAS,PVC	4.05	0.51	2.45	0.50	0.50	0.50	0.59	0.07	0.36
964	BELINDER RD	3043.26	6.462	CAS, PVCC9	3.02	0.27	0.90	0.67	0.50	0.54	0.59	0.04	0.15
22994	W COUNTRY CLUB	3011.80	10.286	CAS, DIP, HDPE	3.59	0.23	1.51	1.34	0.67	0.86	0.70	0.09	0.31

Showing 1 - 10 of 13764 rows

Distribution Division

WaterOne



April 17, 2025

So, What's next?

- 13 replacement projects have gone to design over the course of the last few months solely off the ML results
- Currently validating the remainder of the 2024 breaks to identify final success rate
- Pilot project using leak detection investigation is being considered

Transmission Main Condition Assessment

Risk Criteria for Transmission Mains

- Likelihood of Failure (LOF)
 - 1. Pipe Material
 - 2. PCCP Class IV
 - 3. Pipe Polywrap Status
 - 4. Remaining Useful Life
 - 5. Main Break History
 - 6. Cathodic Protection
 - 7. Condition Assessment Results

- <u>Consequence of Failure</u> (COF)
 - 1. Pipe Diameter
 - 2. Operational Impact
 - General Alignment Under Pavement
 - 4. Impact to Public Safety
 - 5. City CIP Projects
 - 6. Major Street Crossings
 - 7. Prox. to Buildings
 - 8. *#* of Distribution Tie-Ins
 - 9. Service Connections
- Every pipe was assigned a score then scores were normalized by project number

WaterOne Distribution Division

Consequence of Failure Wizard (Pressurized Main - "WAT_COF8")	

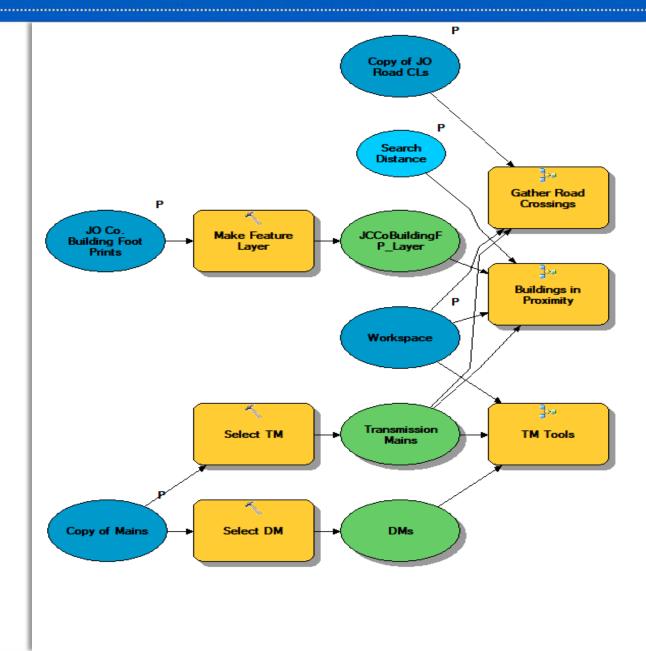
Step5: Set Score Range - OpImpact

	oring Range	Score Method			
	Breaker	Score	No.	Length (Miles)	Range
۲	0	0	123	10.89	Unique Values
	3	3	1586	127.67	Classes: 3
	4	4	253	16.03	0103303. 3
	5	5	454	46.72	Equal Interval

Consequence of Failure Wizard (Pressurized Main - "WAT_COF6")

X

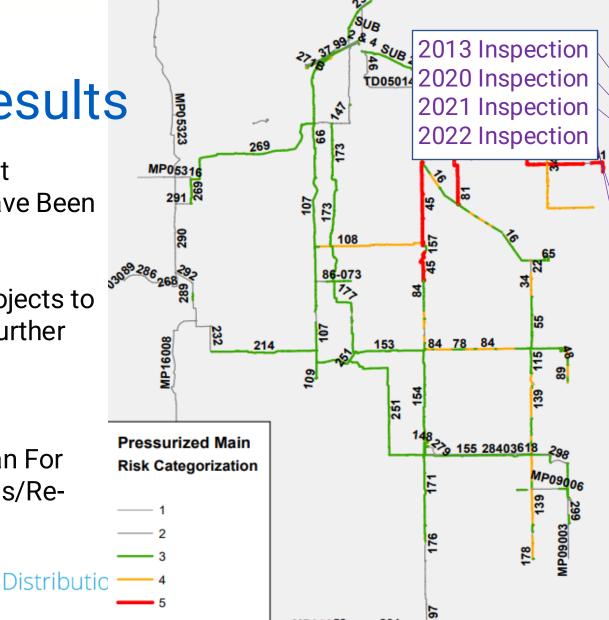
 \times


Step5: Set Score Range - ValveCriticality

E	i 🖬 🗘				l.	Range
	Breaker	Range	Score	No.	Length (Miles)	
Þ	3	<= 3	1	132	8.61	O Unique Values
	7	3 < x <= 7	2	230	17.34	Classes: 5
	11	7 < x <= 11	3	180	10.29	61055651 5
	17	11 < x <= 17	4	138	6.77	Equal Interval
	25	17 < x <= 25	5	111	8.77	Natural Breaks
	[blank value]		0	1639	149.67	Quantile

Use of Model Builder to Automate Workflows

- Several of the criteria for Condition Assessment are not existing attributes in our GIS
- Extra time investment on the front end saves time for future outputs and revisions on the back end
- Allowed us to perform more extensive geoprocessing before importing the data to Asset Planner and assigning scores



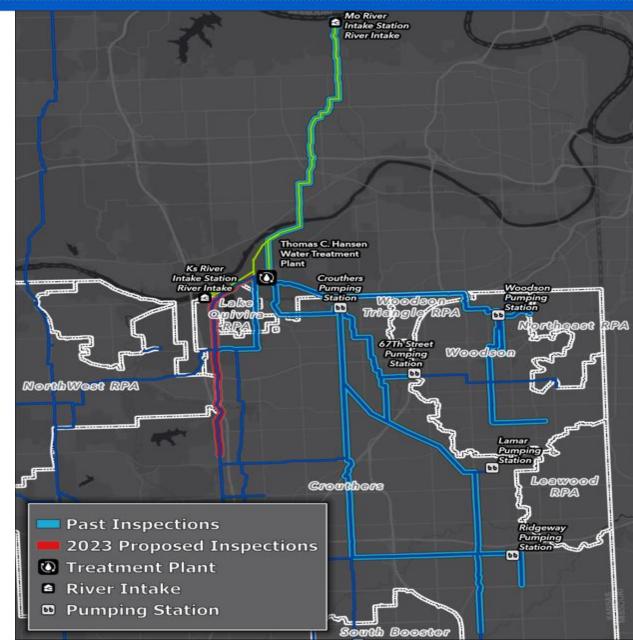
InfoAsset Planner Results

- Validation of what pipes/projects have Been inspected so far
- Identified new projects to inspect that are further away from major facilities
- 5-Year Rolling Plan For Future Inspections/Re-Inspections

WaterOne

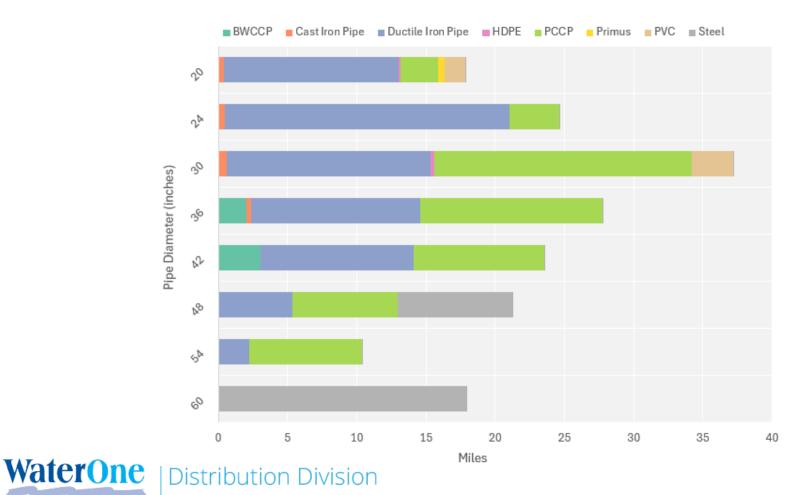
Summary of Project LOF, COF, and Risk Scores 10.06.2021 Total Risk Score = LOF X COF / # of GIS Pipe Segments

Rank	Project No.	LOF Totals	COF Totals	Total Risk Score
1	29	1863	1890	51030
2	81	1358	1944	33860
3	45	1020	1469	29380
4	34	943	2721	27604
5	84	1006	1421	22694
6	107	552	1861	14888
7	148	674	1345	14618
8	141	578	818	13906
9	139	471	1238	11198
10	93	539	1586	11102
11	99	362	1719	9904
12	9915	364	656	9184
13	SUB 2	352	1095	8760
. 14	153	318	1171	8275
15	16	483	875	8214
16	147	456	1145	8034
17	173	308	1120	7840
18	231	352	933	7464
19	208	360	919	7352
20	269	280	970	6790
21	177	288	824	6592
22	55	263	1053	6151
23	108	225	615	5535
24	89	248	377	5492
25	154	210	731	5117


Transmission Main Condition Assessment at WaterOne

Transmission Main Condition Assessment Program

- 2024 budget of 640K
- Over 91 mi inspected to date (46% of 200 mi)
- Over 55 pipe repairs/replacements have been made (2007-2024)
- Expected results from condition assessment
 - Schedule future re-inspections
 - Targeted repairs
 - Future Master plan projects



April 17, 2025

WaterOne Transmission Mains

Transmission Main - Miles by Diameter and Material

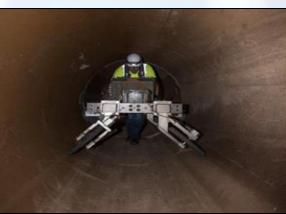
April 17, 2025

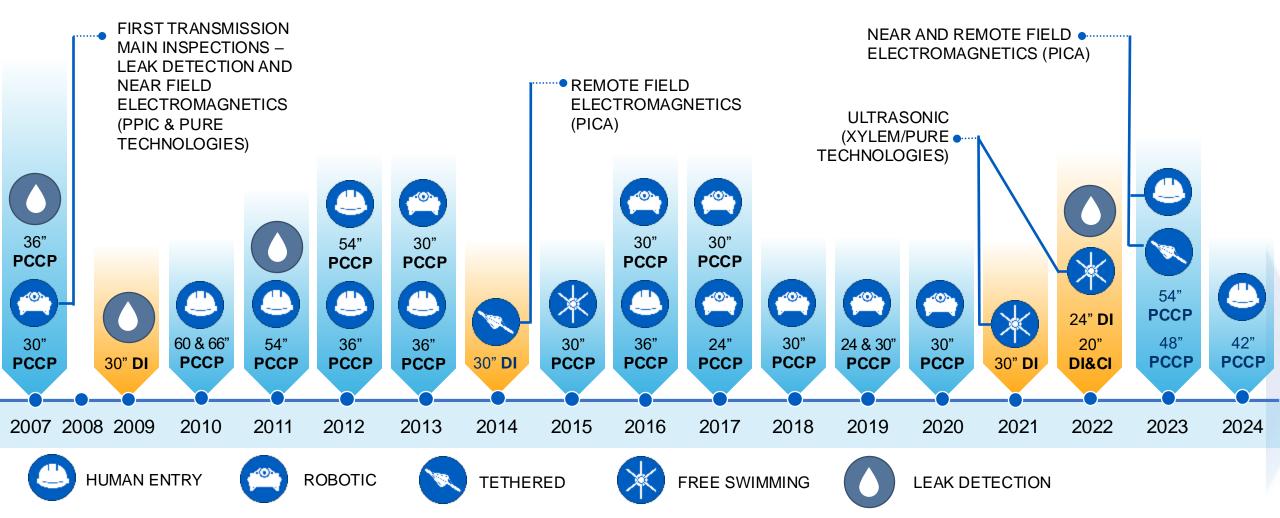
Why Perform Condition Assessment?

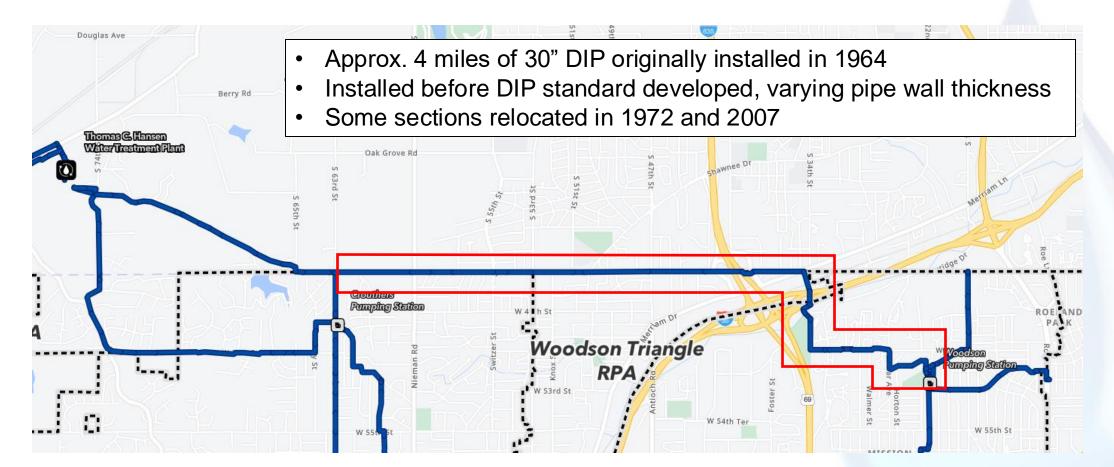
Overview of Water Pipeline Inspection

- Hire external companies with technology, use own crews for prep work, combined team effort
- Primary high-resolution technologies
 - Electromagnetic (Near Field and Remote Field)
 - \circ Ultrasonic
- Four inspection methods
 - o Human entry (≥ 36")
 - \circ Robotic
 - \circ Tethered

WaterOne

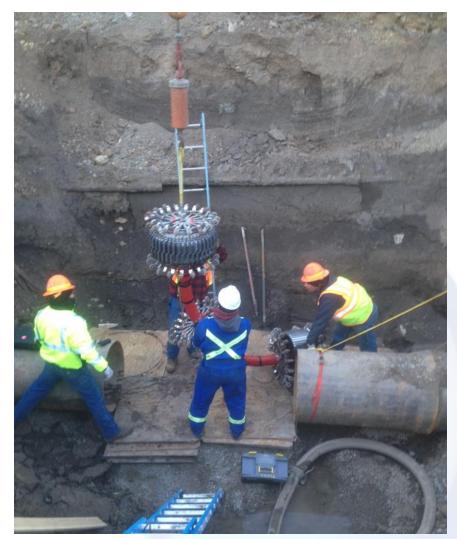

 \circ Free-Swimming





WaterOne Condition Assessment Inspection History

80+ miles of transmission mains inspected

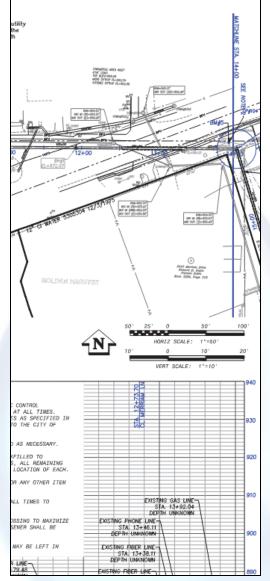


2014 Inspection

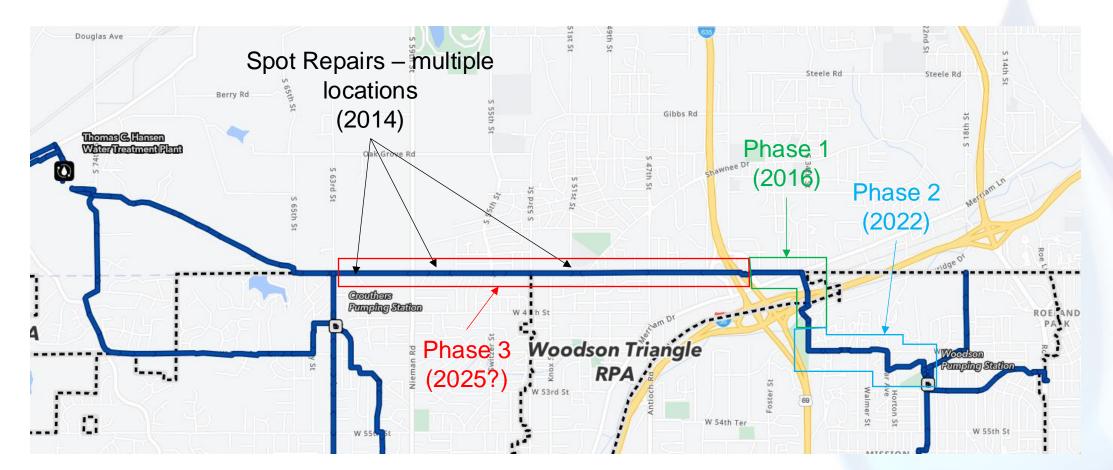
- Inspected in 2014 using electromagnetic remote field technology tool, winched through pipeline.
- High resolution data gave percentage of remaining wall along the pipeline, picking up localized pitting.
- Inspection revealed multiple locations with less than 5% wall remaining, some with through holes.
- Finds were validated

April 17, 2025

2014 RFT Inspection


April 17, 2025

Make a Plan


- Address immediate needs spot repairs with clamps or short replacements
- Divide pipeline into segments and evaluate
 - Risk = probability of failure x consequence of failure
- Developed three phase replacement plan, with ~5 years between phases.
- Add projects to Master Plan, estimate budget
- Start designing

			$t = \frac{P_i D}{2S}$	
Where:			25	
	t	=	net pipe wall thickness, in.	
	P_i	=	design internal pressure, $psi = 2(P_m + P_s)$	
	P_w^*	=	working pressure, psi	
	P.	=	standard surge allowance, 100 psi	
	Ď	=	outside diameter of pipe, in.	
	S	=	minimum yield strength in tension = 42,000 psi	

- Main runs under County Line Road
- North:
 - Wyandotte County (KCK)
- South:
 - $_{\circ}$ Shawnee
 - \circ Merriam
 - Overland Park
- No upcoming Capital Improvement Projects for the road

- Reinspected in 2025 with free swimming ultrasonic technology
 - Inform schedule for replacement
 - Quantify rate of corrosion
 - Bonus comparison of different vendors technology on the same pipeline.
- Draft report due April 2025
- Low investment relative to cost of replacement:
 - Phase II Replacement Cost (just contractor): approx. \$450/LF
 - Phase III Reinspection Cost (just contractor): approx. \$20/LF

Key Benefits of Condition Assessment

- Maximize useful life of 200-mile transmission main system valued at over \$500M
- Avoid catastrophic failures and reduce risk of water supply and quality interruptions
- With good data, better decisions can be made on extending the life of the pipe, defer replacements, and budget future Master Plan projects
- Make targeted repairs in non-emergency conditions, less costly

Thank You!

Jason Beyer Supervisor – GIS Services Email: <u>Jbeyer@waterone.org</u> Phone: 913/895-5731

Peter Gaskamp Lead Engineer – Distribution Engineering Email: <u>pgaskamp@waterone.org</u> Phone: 913/895-5765

