Mitigating Moisture-Related Road Problems with Wicking Geotextile

Jie Han, Ph.D., PE, F.ASCE Roy A. Roberts Distinguished Professor The University of Kansas

Outline of Presentation

- Introduction
- Mechanisms and Benefits
- Laboratory Tests and Results
- Case Studies
- Concluding Remarks

Mechanistic-Empirical (M-E) Pavement Design

Source and Effect of Water

- Migration of fines
- Freeze-thaw

Moisture-related Pavement Distresses

Lawrence, Kansas, USA

Montreal, Canada, 9/15/2024

Moisture-related Pavement Distresses

Credit: City of Edmonton, Canada

Failed after one freeze-thaw cycle due to high groundwater table

Behavior of Compacted Soil

Plotted from Lin et al. (2019)

Road Drainage and Problems

1. Conventional approach: use drainage materials (aggregate, sand layers, or geotextile), only reducing moisture content to a field capacity condition

2. Road condition: often unsaturated and subjected to capillary rise

Wicking Geotextile

Deep-grooved fiber Groove diameter: 30-50 µm Groove spacing: 5-12 µm

Capillary rise height $H_{eq} = \frac{2T\cos\theta}{r}$ Suction $u_f = H_{eq}\gamma = \frac{2T\cos\theta}{r}$

T = liquid surface tension; θ = contact angle; γ = unit weight of liquid; r = capillary radius

Mechanisms & Benefits of Geosynthetics in Roads

Wicking Geotextile to Remove Water in Pavement Structure

Courtesy of J. Lostumbo

(Fredlund and Rahardjo 1993)

R = universal gas constant $(8.31432 \text{ J} \text{ moL}^{-1} \text{ K}^{-1})$, T = absolute temperature, ρ_w = density of water as a function of temperature, M_{w} = molecular mass of water vapor, and RH = relative humidity.

$u_a > u_f > u_s$ Air Fibers Soil

Zhang et al. (2014)

Wicking vs. Non-wicking Geotextile

Top open

۵۵۵ مې م

10

Square root of time (\sqrt{t} , hrs)

5

0

0

Top covered

ano o

10

Square root of time (\sqrt{t} , hrs)

20

25

15

0

5

Almost no water was wicked out by the non-wicking geotextile !!

15

Moisture Reduction Tests

Controlled Room T ~10°C, RH ~50%

300 x 300 x 600 mm high

Fines Effect

Pond fill sand collected

Moisture Reduction Test Results

Moisture Reduction Test Results

Influence Distance of Wicking Geotextile

Large Box Tests

Guo, J., Han, J., Zhang, X., and Li, Z. (2021). "Experimental evaluation of wicking geotextile-stabilized aggregate bases over subgrade under rainfall simulation and cyclic loading." Geotextiles and Geomembranes, 49, 1550-1564.

Test Procedure and Results

Frost Heave Prevention

Pioneer Scenic Byway in Montana, USA

Previous treatment 75 mm (3 in.) 200 mm (8 in.) 500 mm (20 in.) Pipe 🔘 Geotextile

Courtesy of J. Lostumbo

New Treatment with Wicking Geotextile

ANTIN CALL PROPERTY AND

100 mm (4 in)

200 mm (8 in) Reinforcement

250 mm (10 in) Wicking Geotextile

Courtesy of J. Lostumbo

Mitigating High Groundwater Table and Freeze-thaw Problems for Concrete Pavement

Pavement Condition before Reconstruction

Most frequent level of faulting						Fault Score per segment				Avg. no. of distressed joints per location					
YEAR	LANE	RIDE													
		IRI in/mi	Mays in/mi	PL	F	FS	JO	J1	J2	J3	J4	F1	F2	F3	
2014	0	55	39	1	0.6	<mark>6.3</mark>	0.5	-	-	-	-	6.1	-	-	
2015	0	68	50	1	-	-	-	-	-	-	-	-	-	-	
2016	0	82	61	1	1.0	24.6	0.6	-	I	-	-	21.6	1.3	0.1	
2017	0	88	68	1	1.3	34.1	1.8	0.3	0.1	-	-	26.6	3.0	0.4	
2018	0	119	9	2	1.6	46.9	-	-	0.1	-	1.1	35.4	4.3	0.8	
		1		1											

US169 in Iola, Kansas , USA

International Performance Roughness Level Index

Liu, H., Han, J., Al-Naddaf, M., Parsons, R.L., and Kakrasul, J.I. (2022). "Field monitoring of wicking geotextile to reduce soil moisture under a concrete pavement subjected to precipitations and temperature variations." Geotextiles and Geomembranes, 50(5), 1004-1019.

Instrumented Test Sections with Moisture Sensors

Instrumented Test Sections with Moisture Sensors

Climatic Condition

Test Section III: AB3 aggregate/wicking geotextile

Section 1: wicking geotextile

Section 2: no wicking geotextile

Section 3: wicking geotextile

Concluding Remarks

- Wicking geotextile could remove water from soil under a field capacity (unsaturated).
- Wicking geotextile was more effective in reducing water content with time than non-wicking geotextile.
- The ability of wicking water from soil by the wicking geotextile depended on temperature, relative humidity, fines content, and distance to the wicking geotextile.
- The wicking geotextile significantly reduced permanent deformations of test sections under cyclic loading.
- Field studies confirmed the effectiveness of wicking geotextile in removing moisture and mitigating moisture-related road problems.

Thanks!

Questions?