

2023 Terzaghi Lecture at 55th KU Geotechnical Engrg. Conference

Contributions towards Geoparameter Evaluation Using the Cone Penetration Test

Paul W. Mayne, PhD, P.E., Life M. ASCE

Georgia Institute of Technology

Terzaghi Lecturers

1963: Ralph B. Peck 1964: Arthur Casagrande 1966: Laurits Bjerrum 1967: H. Bolton Seed 1968: Philip C. Rutledge 1969: Stanley D. Wilson 1970: T. William Lambe 1971: John Lowe, III 1972: Bramlette McClelland 1974: F.E. Richart, Jr 1975: Geoffrey G. Meyerhof 1976: Lymon C. Reese 1977: Robert F. Legget 1978: Nathan M. Newmark 1979: George F. Sowers 1980: Gerry A. Leonards 1981: Robert V. Whitman 1982: J. Barry Cooke 1983: Ronald F. Scott 1984: James K. Mitchell

1985: Jorg O. Osterberg 1986: Charles C. Ladd 1987: Leonardo E. Zeevaert (Wiechers) 1988: Elio D'Appolonia 1989: John H. Schmertmann 1990: James P. Gould 1991: James M. Duncan 1992: Norbert R. Morgenstern 1993: John A. Focht, Jr 1994: G. Wayne Clough 1995: Roy E. Olson 1996: Robert M. Koerner 1997: Richard D. Woods 1998: Michael W. O'Neill 1999: William F. Marcuson, III 2000: Evert Hoek 2001: Suzanne Lacasse 2002: Victor Milligan 2003: John T. Christian

2004: Harry Poulos 2005: Delwyn G. Fredlund 2006: Raymond J. Krizek 2007: George G. Goble 2008: Jean-Pierre Giroud 2009: Clyde N. Baker, Jr 2010: Robert D. Holtz 2011: Kenneth H. Stokoe 2012: David E. Daniel 2013: Alfred J. Hendron, Jr 2014: J. Carlos Santamarina 2015: Donald A. Bruce 2016: Thomas D. O'Rourke 2017: R. Kerry Rowe 2018: Rudolph Bonaparte 2019: Eddie Idriss 2020: Edward J. Cording 2021: Gregory B. Baecher 2022: Edward Kavazanjian 2023: Paul W. Mayne

Terzaghi Lecturers

2023

1963

2001

Principle of Effective Stress

$\sigma' = \sigma - u$

(Karl von Terzaghi, 1947)

The name is Mayne Dots are my game

Database compilations are useful for:

- Finding trends
- Verification of hypotheses
- Validation of theories
- Cross-check for anomalies
- Predicting performance
- Deciding boundaries
- Statistical analyses
- Sorting groups of data
- Developing correlations

Shear Wave Velocity, V_s (m/s)

where $q_t = q_{c+1}(1-a_{net}) \cdot u_2$ and $0.35 \le a_{net} \le 0.90$ depends on equipment

CPT Sounding, Ghent District, Virginia

Data Courtesy of Ethan Cargill

Post Processing and Normalization of CPT Readings

 $q_{net} = q_t - \sigma_{vo}$ = net cone tip resistance $\Delta u_2 = u_2 - u_0$ = excess porewater pressure $q_E = q_t - u_2$ = effective cone resistance

 $\begin{array}{l} Q = Q_t = Q_{t1} = q_{net} / \sigma_{vo}' = normalized \mbox{ cone resistance } \\ U = \Delta u_2 / \sigma_{vo}' = normalized \mbox{ porewater pressure } = Q \cdot B_q \\ B_q = \Delta u_2 / q_{net} = \mbox{ pore pressure ratio } \\ F_r = 100 \ f_s / q_{net} = normalized \mbox{ friction ratio (%) } \\ Q_E = q_E / \sigma_{vo}' = \mbox{ normalized effective cone resistance } \end{array}$

 $Q_{tn} = q_{net}/(\sigma_{vo}')^n$ in bars where n = *fctn* (soil type and/or I_c) [e.g., n = 1 clay; 0.75 silt; 0.5 sand]

CPT Soil Behavior Type (SBTn) Chart

(Robertson 1990, 2009)

```
CPT Material
Index, I<sub>c</sub>
```


Friction Ratio, $F_r = 100 \cdot f_{st}/(q_t - \sigma_{vo})$ (%)

Overview on CPT contributions

- Effective Stress Friction Angle, ϕ'
- Yield stress (preconsolidation), σ_{p} '
- Sensitivity and Remolded Strength
- State parameter, ψ
- Equipment and Innovations
- New directions for "ConeHeads"

Sands, Silts, Clays Clays Sands, Silts, Clays

Sands, Silts, Clays

Undisturbed Sands to Silty Sands Database (number of sites, N = 28; no. triaxial tests, n = 68)

Reference

JSMFE = Journal Soil Mechanics & Foundations Division (ASCE)

Soil

NGI Lab 2019

NGI Frozen Øysand

Gel-Push Sample

Soil	Site	Site	Reference	Туре	Method of
lumber	Name	Location	Source	Sand	Sampling
1	Blessington	Ireland	Doherty & Gavin (2010, CPT'10, California)	Glacial fine Sand	Sonic
2	Charleston	South Carolina	Esposito et al. (2016, ASCE JGGE)	Pleistocene Sand	Frozen
3	Duncan Dam	British Columbia	Plewes et al. (1994, CGJ)	Glaciofluvial Sand	Frozen
4	Edo	Japan	Mimura (2003, C&EPNS, Singapore)	Natural Alluvial	Frozen
5	Ekofish	North Sea	Mitchell & Lunne (1972, JSMFD ASCE)	Marine	Samples
6	Gioia Tauro	Italy	Ghionna & Porcino (2004, ISC-2 Porto)	Natural Coarse Sand	Frozen
7	Hibernia	North Atlantic	Thompson & Long (1989, CGJ)	Marine Sand	Frozen
8	Highmont	British Columbia	Robertson, Wride, et al. (2000, CGJ)	Tailings	Frozen
9	Holmen	Norway	Lunne, et al (2003, C&EPNS, Singapore)	Natural Alluvial	Tube/Frozen
10	J-pit	Alberta	Robertson, Wride, et al. (2000, CGJ)	Hydraulic Fill	Frozen
11	Kao Hsiung	Taiwan	Huang (2016, ISC-5, Australia)	Alluvial Sands	Gel Sampler
12	Kidd	British Columbia	Robertson, Wride, et al. (2000, CGJ)	Natural Alluvial	Frozen
13	Kilmore	New Zealand	Taylor (2015, PhD - Univ. Canterbury)	Fluvial & Aeolian	Gel Sampler
14	LL Dam	British Columbia	Robertson, Wride, et al. (2000, CGJ)	Tailings	Frozen
15	Madras-Armagh	New Zealand	Taylor (2015, PhD - Univ. Canterbury)	Fluvial & Aeolian	Gel Sampler
16	Massey	British Columbia	Robertson, Wride, et al. (2000, CGJ)	Natural Alluvial	Frozen
17	McDonald Farm	British Columbia	Robertson (1983, Dissertation, UBC)	Fraser River Sands	Piston Tube
18	Mildred L.	Alberta	Robertson, Wride, et al. (2000, CGJ)	Hydraulic Fill	Frozen
19	Milford Dam	Illinois	Stark et al. (2011, ASCE JGGE)	Alluvial Sands	Tube/Frozen
20	Natori	Japan	Matsuo & Tsutsumi (1998, ISC-1, Atlanta)	Natural Alluvial	Frozen
21	Piedmont	Georgia	Harris & Mayne (1994, FHWA Orlando)	Residual silty Sands	Shelby Tube
22	Po River	Italy	Ghionna et al (1995, ISP-5, Quebec)	Alluvial Sands	Not Known
23	Tone	Japan	Matsuo & Tsutsumi (1998, ISC-1, Atlanta)	Natural Alluvial	Frozen
24	West Kowloon	Hong Kong	Lee, Shen, Leung, Mitchell (1999, JGGE)	Hydraulic Fill	Mazier Tube
25	Yodo	Japan	Mimura (2003, C&EPNS, Singapore)	Natural Alluvial	Frozen
26	Yuan Lin	Taiwan	Huang et al (2004, Soil Dyn & EQ Engrg)	Alluvial Sands	Gel Sampler
27	Zelany Most	Poland	Jamiolkowski (DMT 2015, Rome)	Silty fine Sand Tailings	Frozen
28	Øysand	Norway	Quinteros (2022), PhD Imperial College	Fluvial	Frozen
lotes:	JGGE = Journal of	Geotechnical & Geo	environmental Engineering	DMT = Intl. Conf. on Dilate	ometer Testing
	ISC = International	Conference on Site C	Characterization (ISSMGE TC 102)	CPT = Intl. Symp Cone Penetration Test FHWA = Federal Highway Administration	
	C&EPNS = Charac	terization & Engineeri	ng Properties of Natural Soils		
	ISP = International Symposium on Pressuremeter			CGJ = Canadian Geotechnical Journal	

Type

Method of

Effective Friction Angle of Sands and Silty Sands from CPT

Effective Friction Angle of Sands and Silty Sands from CPT

CPT Material Index, I_c

Øysand International GeoTest Site, Norway

(Quinteros, et al. 2019; 2022 PhD – Imperial College)

NTH Solution for ϕ' from CPTU for undrained penetration

NTH = Norwegian Institute of Technology, now NTNU, Trondheim)

$$Q = \frac{\tan^2(45^\circ + \emptyset'/2) \cdot \exp[(\pi - 2\beta) \cdot \tan \emptyset'] - 1}{1 + 6 \cdot \tan \emptyset' \cdot (1 + \tan \emptyset') \cdot B_q}$$

Effective stress limit plasticity theory (c'-0).

Approximation for undrained case ($\beta = 0^{\circ}$):

 $\phi' \approx 29.5^{\circ} \cdot B_q^{0.121} \cdot [0.256 + 0.336 \cdot B_q + \log Q]$

Applicable to clays for OCRs < 2.5 and ranges: $0.05 \le B_q \le 1$ and $18^\circ \le \phi' \le 45^\circ$

Note: for Modified NTH Solution (Sandven et al. 2016), substitute Q' = $Q \cdot OCR^{-\Lambda}$ in above equations

Normalized Cone Resistance, Q

Janbu & Senneset (1974)	Sandven et al. (2015)
Senneset & Janbu (1985)	Sandven et al. (2016)
Senneset et al. (1989)	Ouyang & Mayne (2018)
Sandven (1990)	Ouyang & Mayne (2019)
Sandven & Watn (1995)	Ouyang & Mayne (2023)

Soft Chicago Clay at Northwestern University GeoTest Site

NGES - Northwestern University, Evanston, Illinois

$$Q = \frac{\tan^2 (45^\circ + \phi'/2) \cdot \exp(\pi \cdot \tan \phi') - 1}{1 + 6 \cdot \tan \phi' \cdot (1 + \tan \phi') \cdot B_q} \qquad \phi' = 28.8^\circ$$

Evaluate ϕ' in Soft Chicago Clay from NTH Solution

Comparison of Triaxial ϕ' and NTH ϕ' from CPTu

Comparison of Triaxial ϕ' and Modified NTH ϕ' from CPTu

Effective Friction Angle ϕ ' from Modified NTH Solution

28 Undisturbed Sands to Silty Sands Database Drained Behavior: $-0.06 \le B_q \le +0.01$ Range (mean $B_q = -0.01$)

N = 28 Sands n = 68 Triaxial tests

🗆 W. Kowloon, China	🗙 Yodo River, Japan
× Natori River, Japan	Tone River, Japan
# Edogawa, Japan	– Mildred Lake, Alberta
Massey, BC	Kidd, BC
▲ J-Pit Tailings, AB	Holmen, Norway
🗶 Gioia Tauro, Italy	🗆 Hibernia
H CREC Charleston, SC	• Milford Dam, Kansas
Blessington	♦ Zelany Most, Poland
♦ Yuan Lin, Taiwan	riangle Kilmore, NZ
imes McDonald Farm, BC	* LL Dam Tailings, BC
imes Highmont Dam, BC	Kao Hsiung, Taiwan
GT Piedmont	Oysand
<mark>O</mark> Po River, Italy	♦ Madras-Armagh, NZ
Ekofisk	🔷 Opelika
	•

Opelika National Geotech Experimentation Site, Alabama Fine sandy Silts to silty fine Sands (SM - ML)

350 hectare site

Owned by Alabama DOT

Managed by Auburn University

- Dan Brown
- Brian Anderson
- Jack Montgomery

Opelika National Geotechnical Experimentation Site, Alabama Fine sandy Silt to silty fine Sand (ML-SM) of the Appalachian Piedmont

What is "Spruce Pine" and why is it relevant to geotechnics ?

The Quartz Corporation

- Spruce Pine is the sand used in the Masters Tournaments
- Mined near Asheville, NC
- Purest quartz sand in the world (99.998% SiO2)
- \$20,000/ton (compared to \$20/ton regular sand)

Cam-clay predictions of undrained strength (Mayne, JGE 1980)

- Triaxial series on clays
- Undrained shear strength, s_{uc}
- Effective friction angle, ϕ'
- Overconsolidation ratio, OCR
- Compressibility parameters
- $\Lambda \approx 1 C_s/C_c$
- SHANSEP
- CSSM

	40	\triangle	Silty Holocene Clay
	³⁰ ϕ'	Δ	Kinnegar, Ireland
	20	ж	Hackensack Valley
	Drammen, Norway		Kawasaki Clay
×	Plastic Holocene Clay	×	Kanpur Clay, India
+	Rann of Kutch	-	Osaka Alluvial Clay
•	Kawasaki-Toyoura M10		Kawasaki-Toyoura M15
•	Kawasaki-Toyoura M20		Kawasaki-Toyoura M30
-	Mississippi River	•	Alaskan Gulf
×	Toledo	Ж	Cuyahoga Valley
•	Saint Vallier	+	Oslo Clay
+	Montgomery Formation	0	Keuper Marl
•	Bentler		Japanese Clay
	Bangkok Soft Clay	×	Milazzo, Italy
ж	Drammen Clay		Backswamp Clay
+	Kars	-	Willard Bay
-	Rang du Fleuve	•	Terra Roxa, Brazil
	Amuay Clay, Venezula		Scott Clay, Quebec
◇	Nong Ngoo Hao	Ж	Wallaceburg, Ontario
0	Concord Blue	+	New Liskeard
•	Vicksburg, Mississippi		Ohio Clayey Silt
	Sault Ste Marie, MI		Molndal, Sweden
◇	Fao Clay, Iraq	×	Texcoco, Mexico
Δ	La Roche Chalais, France	Δ	Whitefish Falls
ж	East Atchafalya, MS	ж	Buckshot Clay, MS
♦	New England Marine	Δ	Outardes River, QC
♦	Lower Cromer Till	×	Boston Blue Clay
•	Khor-Al-Zubair		Weald Clay
Δ	Chek Lap Kok, HK		Hokkaido 1, Japan
	Hokkaido 3, Japan	+	St. Louis Clay
	Port of Anchorage, AK	ж	Yorktown VA

SCE-CSSM Analytical Method for CPTu in clays

 U_2

qt

$$YSR = 2\left[\frac{(2/M_c) \cdot Q}{(4/3)(\ln I_R + 1) + \pi/2 + 1}\right]^{(1/\Lambda)}$$

$$YSR = 2\left[\frac{U-1}{(2M_c/3)\cdot\ln(I_R)-1}\right]^{(1/\Lambda)}$$

$$YSR = 2 \cdot \left[\frac{Q_E}{1.95M_c + 1}\right]^{(1/\Lambda)}$$

$$I_{R} = \exp\left[\frac{1.5/M_{c} + 2.925 \cdot a_{q}}{1 - a_{q}}\right] \text{ where } a_{q} = \frac{(u_{2} - \sigma_{vo})}{(q_{t} - \sigma_{vo})}$$

Vesic (1977):
$$s_{uc} = \frac{q_{net}}{N_{kt}}$$
 where $N_{kt} = \frac{4}{3} [\ln(I_R) + 1] + \frac{\pi}{2} + 1$

SCE = spherical cavity expansion CSSM = critical state soil mechanics

 $M_{c} = 6 \sin \phi' / (3 - \sin \phi')$ $I_{R} = G/s_{u} = rigidity index$ $s_{u} = (M/2)(OCR/2)^{\Lambda} \sigma_{vo}'$ $\Lambda = 1 - C_{s}/C_{c}$

Soft Chicago Clay at Northwestern University

28°

1.11

147

10.6

$$I_R = \exp\left(\frac{1.5 + 2.925 \cdot M_c \cdot a_q}{M_c \cdot (1 - a_q)}\right)$$

where
$$a_q = \frac{(u_2 - \sigma_{vo})}{(q_t - \sigma_{vo})} = \frac{U - 1}{Q}$$

Parameter
$$a_q = (U-1)/Q = 0.46$$
Effective Friction Angle, $\phi' = 28^{\circ}$ $M_c = (6 \sin \phi')/(3 - \sin \phi') = 1.11$ $I_R = Rigidity Index = 147$ $N_{kt} = cone bearing factor = 10.6$

CPTU in soft Chicago clay at Northwestern Geotechnical Test Site

Simplified SCE-CSSM Solution for Monotonic Dissipation (Burns 1998; Burns & Mayne 1998; Burns & Mayne 2002)

Measured time for 50% consolidation: t_{50}

SCE-CSSM Solution: $c_{vh} = \frac{T'_{50} \cdot (a_c)^2 \cdot (I_R)^{0.75}}{t_{50}}$

 $T_{50}' = 0.03 = time factor for 50\%$ porewater dissipation

 a_c = radius of penetrometer or probe or piling

- I_R = undrained rigidity index of the clay
- c_{vh} = coefficient of consolidation

CPTU in San Francisco Bay Mud (Hunt, Pestana, and Bray 2001a, 2001b in JGGE)

CPTU Dissipations in San Francisco Bay Mud

Pro Bono

Professional Service

Prof. Rodrigo Salgado

James K. Mitchell

Pro Bono

Prof. Tim Stark

Geotech And Lawyer Mike Jamiolkowski

Direct CPTU Method for s_u from 62 natural clays

Remolded Undrained Shear Strength, s_{ur}

Dataset: s_{ur} and f_s for 12 Clays of low-medium sensitivity: $S_t < 10$

- New Orleans, LA Field Vane (Mayne 2008)
- Burswood, Australia Field Vane (Low PhD, UWA 2009)
- Orman Lange Lab Fall Cone (Powell & Lunne 2005)
- × Offshore West Africa Miniature Lab Vane (Velosa et al 2013)
- Santa Barbara, CA Remoulded UU (Quiros & Young 1988)
- A Hamilton AFB, CA Field Vane (Cabal & Robertson 2014)
- McDonald Farm, BC Field Vane (Greig 1985)
- × B.C. Hydro Field Vane (Greig 1985)
- Upper 232nd Street Field Vane (Greig 1985)
- Taipei Clay Field Vane (Chin et al 2007)
- Bothkennar UK Field Vane (Nash et al. 1992)
- Onsoy Fall Cone (Yafrate & DeJong 2006)

Remolded Undrained Shear Strength, sur

Remolded Undrained Shear Strength, s_{ur} Dataset: s_{ur} and f_s for 5 Clays of high sensitivity: $S_t > 10$

Remolded Undrained Shear Strength, sur

New VST-CPTU database from 14 natural clays

Dover, NH

Taipei Clay

7 highly sensitive to quick clays $(15 < S_{+} < 100+)$

7 clays of low-medium sensitivity $(2 < S_t < 8)$

What famous geo-song did the

artist Sting perform?

Sting: You Don't Have to Put on the Red....

Simplified SCE-CSSM Solution for CPTU in Clays

Evaluating Yield Stresses in Sands by CPT

Oxford University

Dp

e,

INVERSE PROBLEM

q_c

f_s

 \mathbf{u}_2

 σ_{vc}

Artificial

Sand

Deposit

σ_{hc}

Calibration Chamber Data

- Flexible Wall Chambers
- Essentially large triaxial test
- □ 706 tests from 26 sands

$$ZSR = \left[\frac{0.192 \cdot (q_{net} / \sigma_{atm})^{0.22}}{(1 - \sin \phi') \cdot (\sigma_{vo}' / \sigma_{atm})^{0.31}}\right]^{\frac{1}{\sin \phi' - 0.27}}$$

Ishihama beach sand Albany silica sand Hime gravel Virginia Tech

Generalized yield stress evaluation from CPT

26 SANDS (n = 706 chamber tests)

$$YSR = \left[\frac{0.192 \cdot (q_{net}/\sigma_{atm})^{0.22}}{(1 - \sin\varphi') \cdot (\sigma_{vo}'/\sigma_{atm})^{0.31}}\right]^{\frac{1}{\sin\varphi' - 0.27}}$$

where σ_{atm} = atmospheric pressure (1 atm \approx 1 bar = 100 kPa).

$$YSR \approx \left[\frac{(q_{net}/\sigma_{atm})^{0.72}}{13.8 \cdot (\sigma_{vo}'/\sigma_{atm})^{1.02}}\right]$$

 $\sigma_p' \approx 0.32 \cdot (q_{net})^{0.72}$

For
$$\phi' = 35^{\circ}$$

First-Order Approximation Units of kPa 206 CLAY SITES (n = 1234)

School of Civil and	
Ender of the I Freedomenia	
Environmental Engineering	
	Genzia institute of Technology
	Georgia Institute of Technology
Profiling the	Georgia Institute of Technology
	Georgia Institute of Technology
Overconsolidation	Georgia Institute of Technology
	Georgia Institute of Technology
Ratio of Clays by	Georgia Institute of Technology
D'anter Track	Georgia Institute of Technology
Piezocone lests	Georgia Institute of Technology
	Georgia Institute of Technology
	Georgia Institute of Technology
Barry Shive Chen PhD PE	Georgia Institute of Technology
barry onlyo onen, Filb, F.L.	Georgia Institute of Technology
	Georgia Institute of Technology
Paul W. Mayne, PhD, P.E.	Georgia Institute of Technology
	Georgia Institute of Technology
	Georgia Institute of Technology
	Georgia Institute of Technology
ala ana a ma	Georgia institute of Technology
National Science Foundation	teorgia insulate of technology
August 1994	
Report No. GIT-CEEGEO-94-1	

$$\sigma_p' \approx 0.33 \cdot (q_{net})$$

$$\sigma_p'(kPa) = 0.33 \cdot (q_t - \sigma_{vo})^{m'}$$

Generalized yield stress evaluation from CPT

SOA-1 at ICSMGE (2009, Egypt): Mayne, Coop, Springman, Huang, and Zornberg

Trend of Exponent m' with CPT Material Index, I_c

OC Sand at Cuxhaven, Germany (Quinteros, Lunne, Krogh, et al. CPT'18)

Undrained-Drained Threshold on Q_{tn} - F_r Chart (Robertson 2009) Conventional Definition: Undrained when $I_c > 2.60$; Drained when $I_c < 2.60$

Clay Database (N = 70; n = 440)

Defining undrained behavior on $Q - B_q$ Chart

Undrained when $I_{Q-Bq} < 4$

Index defined by Torrez-Cruz (2015 PCSMGE, Buenos Aires)

$$I_{Q-Bq} = Q \cdot 10^{(-1.9 B_q)}$$

Clay Database (N = 70; n = 440)

Caveat: Generalized Method: Yield Stress of Soils from CPT

$$\sigma_{p}' \approx 0.33 \ (q_{net})^{m'}$$
 (units of kPa)

A. If undrained, use simplified method with m' = 1

- B. Otherwise, evaluate exponent m' from I_c expressions:
- m' \approx 1 0.28/[1 + (I_c/2.65)²⁵] (Agaiby & Mayne, 2019)
- m' \approx 1 = 0.28/[1 + (I_c/2.6)¹⁵] (Robertson & Cabal 2022)

Geotechnical Site Investigations

"Soils are made by Nature, and not by man,

[thus] the products of Nature are always complex"

Karl von Terzaghi - 1936

TESLA ROADSTER Your chance to own one of the most advanced cars on the road today

Toyota Colors

Logarithm Effective Mean Stress, p'

Methods for Screening State Parameter by CPTU

$I'_{c} = \sqrt{\left\{3 - \log_{10}\left[Q(1 - B_{q})\right]\right\}^{2} + \left\{1.5 + 1.3\log_{10}(F_{r})\right\}^{2}}$ **Center of Circle** Jefferies & Been (2015) Radius $I_{c}^{*} = 1.25$ 2.76 2.40 1.80 1000 1 Q (1 - B _q) + Gravelly Sands 100 ·0.20 **Dimensionless Resistance**, Sands to Sand .15 Dilative some silt [~] 0.10 Siltv Sands 10 to Sandy Silts ^{*} 0.05 Clavev Silts Claysand Sensitive Soils 0.1 10 Friction Ratio, FR = $f_s/(q_t - \sigma_{vo})$ (%)

Jefferies and Been (2006, 2015)

Robertson (2010, 2022)

$$\psi = 0.56 - 0.33 \cdot Q_{tn-cs}$$

$$Q_{tn-cs} = K_c \cdot Q_{tn}$$

Interrelationships between State Parameter ψ and YSR

- Been et al. (1989)
- Plewes et al. (1992)
- Been & Jefferies (1992)
- Yu (1998, 2006)
- Mayne & Sharp (2019)

Nexus between State Parameter ψ and YSR for Sands

Jefferies & Been (2006, 2015): $I'_c = \sqrt{\{3 - \log_{10}[Q(1 - B_q) + 1]\}^2 + \{1.5 + 1.3\log_{10}(F_r)\}^2}$

🛛 Yodo River, Japan
Tone River, Japan
– Mildred Lake, Alberta
Kidd, BC
Holmen, Norway
Hibernia, North Atlantic
Milford Dam, Kansas
Zelany Most, Poland
riangle Kilmore, NZ
* LL Dam Tailings, BC
Kao Hsiung, Taiwan
• Po River, Italy
♦ Ekofish, North Sea
Oysand, Norway

State Parameter ψ and YSR for Silt Database

CPTU Clay Database Focus on CAUC s_{uc} from 70 natural clays (n = 501)

(Mayne & Peuchen, CPT'18; CPT'22)

GoG 2 × Brage 2 China ▲ Chinguetti East India ♦ Gullfaks C ▲ GoG 1 Laminaria OGOG 4 **GoG 3** GoG 5 GoG 6 Lower Troll × Norwegian Sea Osaka Bay Upper Troll South Gloucester Upper △ Snorre South Gloucester Lower ♦ Hilleren × Tiller ▲ Oz (lower) X Oz (Upper) Amherst + Ariake × Ballina **X** Bangkok NNH ♦ Boston Blue Clay 246 × Belfast ▲ Bothkennar X Busan Goteborg 1-470b + Kurihama Hamilton AFB ◆ Lake Bonneville Liayungang Lierstranda Lilla Mellosa X Newbury × Louiseville Nile River Delta ▲ Northwestern Univ. Onsoy + Pisa ♦ Porto Tolle Recife ▲ San Francisco × Sarapui X Saro Road 6/900 Singapore Taipei Clay K1 Torp Anchorage + Cooper Marl Haltenbanken 🗖 Haga A Baytown ▲ Taranto Baton Rouge Brent Cross Dublin Boulder Clay Beaufort Sea

CPTu Methodology for s_{uCAUC} × Brage 2

Offshore NC-LOC Clays

Sensitive Clays

Onshore NC-LOC Clays

OC Intact

OC Fissured

Nexus between State Parameter ψ and YSR in clays

All Four Types of Clays

Yield Stress Ratio, YSR

State Parameter ψ and YSR in sands, silts, and clays

Contractive-Dilative Threshold at ψ = -0.05

Contractive Behavior Clays: YSR < 3 Silts: YSR < 2 Sands: YSR < 1.35

r² = 0.84

 $r^2 = 0.78$

r² = 0.74

CASM = clay and sand model (Yu et al. 2019)

Constitutive Soil Model Based on Critical State Soil Mechanics

Fig. 3. (a) Comparisons of yield surfaces of OCC, MCC, and CASM; and (b) Example yield surfaces of CASM.

Profiling Yield Stress in Clays by CPT

SCE-CSSM Solutions for YSR

First-order approximations for insensitive, inorganic clays

$$YSR = 2 \left[\frac{(2/M)Q}{(4/3)(\ln I_R + 1) + \frac{\pi}{2} + 1} \right]^{(1/\Lambda)}$$

For
$$\Lambda = 1$$
 $\phi' = 30^{\circ}$ $I_R = 100$

$$\sigma_{P'} = \frac{(q_t - \sigma_{vo})}{M \cdot [1 + \frac{1}{3}\ln(I_R)]} \qquad \Longrightarrow \qquad \sigma_{P'} \approx 0.3(q_{net})$$

$$YSR = 2\left[\frac{U-1}{\frac{2}{_{3}M} \cdot \ln(I_{R}) - 1}\right]^{(1/\Lambda)} \approx 2\left[\frac{U}{\frac{2}{_{3}M} \cdot \ln(I_{R})}\right]^{(1/\Lambda)}$$

Yield stress of clays from CPTU (2023)

Regression lines from best fit lines (b = 0)

$$\sigma_p' = 0.3 q_{net}$$

 $\sigma_p' = 0.5 \Delta u_2$

Yield stress of clays from CPTU (2023)

$$\sigma_p' = \sqrt{\left(\sigma_p'\right)^2}$$

$$\sigma_p' = \sqrt{(0.3 q_{net}) \cdot (0.5 \Delta u_2)}$$

For
$$B_q = \frac{\Delta u_2}{q_{net}} > 0.3$$

$$\sigma_p' = 0.3 \ q_{net} \sqrt{\frac{B_q}{0.6}}$$

Legacy - Terzaghi Lecturers

Music with James K. Mitchell TL 1984

Music with Harry Poulos TL 2004

> Ken Stokoe II TL 2011

The Shortest TL

Beer for CPT Users

Developments in Geotechnical Engineering

Volume 1, 1972, Pages 121-142

Chapter 3 - The De Beer Theory for the Interpretation of Penetrometer Test Data

Cone Penetrometer Sizes

Cone Penetrometer Sizes

Free Fall Cone Penetrometers

For investigating rivers and waterways

Harpoon Penetrometers

44 mm < d < 250 mm

- US Navy XDP
- Canadian FFCPT
- German MARUM
- Australian FFP
- Brasil COPPE

Mini-Cone Penetrometers

CPT Piezocones for Centrifuge - University of Western Australia

50 mm

d = 10 and 12 mm

Main Centrifuge

Drum Centrifuge

Micro-Cone Penetrometers

Kim, Choi, Lee & Lee: Korea University (GeoFlorida 2010)

Developed FBG Cone Penetrometers

	(Dia. 1mm)
	(Dia. 3mm)
	(Dia. 5mm)
Micro cone	(Dia. 7mm)
0 SO 100 110 120	0 130 140 150 160 170 180 190 200 210 2

FBG = Fibre Bragg Grating sensor

- Diameter : 1~7mm
- FBG +S/G sensors
- Temperature transducer
- Dual stainless steel tube

Vaccination Shots and Booster Jabs Using CPT

1-mm diameter cone penetrometer

Robotic CPT - AutoCoson by A.P. van den Berg, Holland

Onshore

Offshore

PROD = Portable Remotely Operated Drill by Benthic Geotech Australia

Cone Penetrometer Testing

Hand-held electronic cone penetrometers

Excellent Repeatability

Spectrum Scout SC 900

Rimik CP40 Eijkelcamp

CPTs in Antarctica

Adrian McCallum Scott Polar Research Institute (SPRI) Lankelma, UK

Halley Research Station

Cone Resistance, q_c (MPa)

CPTs all 7 continents all 5 oceans

Lunar Cone Penetrometer

Carrier, W.D., Mitchell, J.K. and Mahmood, A. "The Nature of Lunar Soil," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 99, No. SM 10, 1973, pp. 813-832.

The Moon

Mars

In-Sight Mission by NASA

INSIGHT MISSION: External Geotechnical Review Team at JPL

Jose Andrade, Caltech, Professor, Dept. of Mechanical & Civil Engineering Paul Mayne, Georgia Tech, Professor, School of Civil & Environmental Engineering David Zeng, Case Western Reserve, Professor and Chairman, Dept of Civil Engineering Ralph Lorenz, John Hopkins Applied Physics Lab, Planetary In-Situ instrumentation

Martian Penetrometer

Proceedings ICSMGE 2022 - Sydney Special Lecture: Planetary Geotechnics

Pierre Delage, École des Ponts Paris Tech

INSIGHT MISSION Mars Penetrometer (inadvertently inclined CPT)

Cone Penetration Rig

Cone Penetration Rigs and Vehicles

New Electric-Diesel Hybrid CPT Rig

Hybrid-EV Powered CPT Site Characterization

140-m deep SCPTU - Fraser River Delta, BC

CONETEC

CBBG Self-Burrowing Robotic Integrated Sensor System

Courtesy: Chloe Arson - GT

Center for Bio-mediated &

Bio-inspired Geotechnics

CBBG Self-Burrowing Robotic Integrated Sensor System

NOW in 2023

BACK TO THE FUTURE - 1,000,000 years of evolution by plants and self-propelling animals (earthworms)

Researchers: Chloe Arson/GT, Alexandro Martinez/UCD Jason DeJong/UCD; J. David Frost/GT

Self-Propelled

Curved

Soundings

Pushed Vertical Soundings

Specialized CPTs

- Resistivity Cones
- Seismic CPT
- Cone Pressuremeter
- Conductivity CPT
- Gamma CPT
- pH CPTu
- Vision CPT (VisCPT)
- Dielectric CPTu
- Acoustic CPT
- Radio-isotope CPT
- Vibrocone (VCPT)
- Thermal (TCPT)

Any unanswered Questions ? Please see.....

ChatCPT

Open Al

ConeTec CPT Manual (2023)

Paul W. Mayne Ethan Cargill Jim Greig

Free PDF download from:

www.conetec.com

257 pages

Some Famous ConeHeads

Tom Lunne and Guy Sanglerat

John Powell and Peter Robertson

Band U2 formed in 1976

U2 BEST OF

New Musical Band "qt"

 f_s U_2

Lead Vocalist: Inger Sofie Senneset

A real "Cutie" pronounced "qu-tee"

(Also a beer drinker)

Lead Guitarist for the band **qt**

Kaare Senneset

ConeHeads from Around the World

Wines for ConeHeads

The Geotech Mascot is the Groundhog

Groundhog = Marmot = Woodchuck = Whistlepig

Whiskey

\$4369/bottle

What is the preferred alcoholic

beverage by ConeHeads?

G-I

Ser Mark

ASCE

